
   
                         
                        ISSN(Online): 2320-9801 
           ISSN (Print):  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijircce.com 
Vol. 5, Issue 4, April 2017 

            

Copyright to IJIRCCE                                                              DOI: 10.15680/IJIRCCE.2017. 0504219                                          8271       

  

Parallel Mining of Frequent Itemsets Using 
FIMN on Neo4j 

 
M.Jayashree1, M.Barathi2 

PG Scholar, Dept. of CSE, Ganadipathy Tulsi’s Jain Engineering College, Vellore, Tamil Nadu, India 

Professor, Dept. of CSE, Ganadipathy Tulsi's Jain Engineering College, Vellore, Tamil Nadu, India 

 
ABSTRACT: As the data size increases globally day to day on web world, the utilization and enhancement of data 
retrieval and persistence is required. The current parallel mining techniques involves the clustering and frequent 
itemsets mining which critically lacks in automatic parallelization, load balancing, data distribution, and fault tolerance 
on large clusters. The existing system works on top of FiDoop framework, which possesses the latency and low 
threshold on handling large clusters. In order to ensure the automatic parallelization and dynamic shrading and 
automatic instance, the new framework for frequent itemset mining FIMN is built on top of Neo4j graph database 
applying the Random forest algorithm which undergoes the several classifications of data uploaded. In Neo4j, 
MapReduce jobs are implemented to complete the mining task. In the MapReduce work, the mappers freely decay 
itemsets; the reducers perform mix operations by developing little ultra metric trees, and the real mining of these trees 
independently. A survey on this FIMN framework on Neo4j includes it will has high scalability and efficiency on 
application servers and there is no latency issues. 
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I. INTRODUCTION 
 
Frequent itemset mining (FIM) is one of the best known and most prominent data mining techniques. Frequent 

itemsets mining is a center issue in association rule mining (ARM), sequence mining, and the like. Accelerating the 
process of FIM is basic and key, since FIM utilization represents a critical bit of mining time because of its high 
calculation and input/output (I/O) power.  

Frequent itemset mining is a data analytics strategy that was initially produced for market basket analytics. It goes 
for discovering regularities in the shopping behavior of the clients of supermarkets, mail order organizations, and 
online shops. Specifically, it tries to distinguish sets of items that are frequently purchased together. When recognized, 
such arrangements of related items might be utilized to streamline the association of the offered items on the racks of a 
market or the pages of a mail-order inventory or Web shop, or may give insights which items may advantageously be 
packaged. 

Frequent pattern mining (FPM) assumes a fundamental part in mining association. Parallel frequent pattern detection 
algorithms exploit parallel and distributed computing resources to mitigate the sequential bottlenecks of current 
frequent pattern mining algorithms. In this manner, parallel FPM algorithm accomplish better versatility and execution, 
so they are drawing in much consideration in the data mining research group. 

Frequent patterns are prevalent in real-life data, such as sets of items bought together in a superstore and some 
molecular fragments frequently appearing in a certain class of molecules with similar functions. Frequent pattern 
mining has been successfully applied to association rule mining, pattern-based classifications and clustering, and 
finding correlated items, and has become an essential data mining task. Although many efficient serial FPM algorithms 
have been proposed in recent years with a wide variety of implementation details, they can be differentiated by their 
pattern lattice enumeration strategies, support counting methods, and search space pruning techniques. 
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II. RELATED WORK 
 
Frequent itemsets mining algorithm can be isolated into two classifications [2], [7], in particular, Apriori and FP-

growth schemes. Apriori is a classic algorithm using the generate-and-test step that produces an extensive number of 
candidate itemsets; Apriori needs repeated scanning of entire database. To reduce the time required for examining 
databases, proposed a novel approach called FP-growth, which abstains from producing candidate itemsets. Most 
created parallel FIM algorithms were based upon the Apriori algorithm. Unfortunately, in Apriori-like parallel FIM 
algorithms, every processor needs to filter a database numerous times and to trade an excessive number of candidate 
itemsets with different processors. In this manner, Apriori-like parallel FIM solutions endure potential issues of high 
I/O and synchronization overhead, which make it aggressive to scale up these parallel algorithms. This problem has 
been tended to by the execution of FP-growth like parallel algorithms. A drawback of FP-growth like parallel 
calculations, in any case, lies in the infeasibility to develop in-memory FP trees to suit extensive scale databases. This 
issue turns out to be more articulated with regards to massive and multidimensional databases. 

III. PRELIMINARY 
 
In this section, we first briefly review the FiDoop. Then, we summarize the basic idea of the Random Forest 

algorithm. To facilitate the presentation of FIMN, we introduce the MapReduce programming framework. 
 

A. Frequent Itemset Mining: 
Frequent Itemset Mining is one of the most critical and time-consuming tasks in association rule mining (ARM), an 

often-used data mining task, provides a strategic resource for decision support by extracting the most important 
frequent patterns that simultaneously occur in a large transaction database [3]. A typical application of ARM is the 
famous market basket analysis. 

Let I=I1, I2, … , Im be a set of m distinct attributes, T be transaction that contains a set of items such that T ⊆I, D 
be a database with different transaction records Ts. An association rule is an implication in the form of X⇒Y, where X, 
Y ⊂I are sets of items called itemsets, and X∩Y = ∅. X is called antecedent while Y is called consequent, the rule 
means X implies Y. There are two important basic measures for association rules, support(s) and confidence(c). Since 
the database is large and users concern about only those frequently purchased items, usually thresholds of support and 
confidence are predefined by users to drop those rules that are not so interesting or useful. The two thresholds are 
called minimal support and minimal confidence respectively. Support(s) of an association rule is defined as the 
percentage/fraction of records that contain X ∪Y to the total number of records in the database. Suppose the support of 
an item is 0.1%, it means only 0.1 percent of the transaction contain purchasing of this item. Confidence of an 
association rule is defined as the percentage/fraction of the number of transactions that contain X ∪Y to the total 
number of records that contain X. Confidence is a measure of strength of the association rules, suppose the confidence 
of the association rule X⇒Y is 80%, it means that 80% of the transactions that contain X also contain Y together. 

In general, a set of items (such as the antecedent or the consequent of a rule) is called an itemset. The number of 
items in an itemset is called the length of an itemset. Itemsets of some length k are referred to as k-itemsets. 

Generally, an association rules mining algorithm contains the following steps: 
 The set of candidate k-itemsets is generated by 1-extensions of the large (k -1) -itemsets generated in the 

previous iteration. 
 Supports for the candidate k-itemsets are generated by a pass over the database. 
 Itemsets that do not have the minimum support are discarded and the remaining itemsets are called large k 

itemsets. 
This process is repeated until no more large itemsets are found. 
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B. Fidoop: 
Aiming to improve data storage efficiency and to avert building conditional pattern bases, FiDoop incorporates the 

concept of FIU-tree rather than traditional FP trees [1]. After h-itemsets are generated in phase 1, an iterative process is 
repeatedly running to construct k-FIU trees and to discover frequent k-itemsets until the k value is from M to 2. In other 
words, the construction of k-FIU trees and the discovery of frequent k-itemsets are executed in a sequential way. Even 
worse, it is nontrivial to construct k-FIU-tree, which is the most important and time consuming phase. Then constructs 
a k-FIU tree by decomposing each h-itemset into k-itemsets, where k + 1 ≤ h ≤ M. Then, the union of original k-itemsets 
is calculated to construct the k-FIU tree. The generation of the k-itemsets requires decomposing all possible h-itemsets 
(h > k); thus, the decomposition process is sequentially performed starting from long to short itemsets. As such, we 
improve the serial FIUT algorithm as follows. 

1) The first phase of FIUT involving two rounds of scanning a database is implemented in the form of two 
MapReduce jobs. The first MapReduce job is responsible for the first round of scanning to create frequent one-
itemsets. The second MapReduce job scans the database again to generate k-itemsets by removing infrequent items in 
each transaction. 

2) The second phase of FIUT involving the construction of a k-FIU tree and the discovery of frequent k-itemsets is 
handled by a third MapReduce job, in which h-itemsets (2 ≤ h ≤ M) are directly decomposed into a list of (h − 1) 
itemsets, (h − 2) itemsets,…., and two-itemsets. In the third MapReduce job, the generation of short itemsets is 
independent to that of long itemsets. In other words, long and short itemsets are created in parallel by our parallel 
algorithm. 

 
C. Random Forest: 

Aim Random forests are an aggregate learning method for classification, regression and other tasks, which operate 
by constructing a multiple decision trees at processing time and outputting the mode of the classes or mean prediction 
of the separate trees [11]. It is a combination of tree predictors such that each tree depends on the values of a random 
vector sampled independently and with the same distribution for all trees in the forest. The training algorithm for 
random forests applies the general technique of bootstrap aggregating, or bagging, to tree learners. Given a training set 
X = x1 … xn with responses Y = y1... yn, bagging repeatedly (B times) selects a random sample with replacement of the 
training set and fits trees to the samples.  

The common element in all of these procedures is that for the kth tree, a random vector Θk is generated, independent 
of the past random vectors Θ1, ... ,Θk−1 but with the same distribution; and a tree is grown using the training set and Θk , 
resulting in a classifier h(x,Θk ) where x is an input vector. For instance, in bagging the random vector Θ is generated as 
the counts in N boxes resulting from N darts thrown at random at the boxes, where N is number of examples in the 
training set. In random split selection Θ consists of a number of independent random integers between 1 and K. The 
nature and dimensionality of Θ depends on its use in tree construction. 

 
D. Mapreduce Framework: 

     MapReduce is a popular data processing paradigm for efficient and fault tolerant workload distribution in large 
clusters. A MapReduce computation has two phases, namely, the Map phase and the Reduce phase. The Map phase 
splits an input data into a large number of fragments, which are evenly distributed to Map tasks across a cluster of 
nodes to process. Each Map task takes in a key-value pair and then generates a set of intermediate key-value pairs. 
After the MapReduce runtime system groups and sorts all the intermediate values associated with the same 
intermediate key, the runtime system delivers the intermediate values to Reduce tasks. Each Reduce task takes in all 
intermediate pairs associated with a particular key and emits a final set of key-value pairs. MapReduce applies the main 
idea of moving computation towards data, scheduling map tasks to the closest nodes where the input data is stored in 
order to maximize data locality.  

Hadoop is one of the most popular MapReduce implementations. Both input and output pairs of a MapReduce 
application are managed by an underlying Hadoop distributed file system [13]. At the heart of HDFS is a single 
NameNode a master server managing the file system namespace and regulates file accesses. The Hadoop runtime 
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system establishes two processes called JobTracker and TaskTracker. Job-Tracker is responsible for assigning and 
scheduling tasks; each TaskTracker handles mappers or reducers assigned by JobTracker.  

When Hadoop exhibits an overwhelming development momentum, a new MapReduce programming model Spark 
attracts researchers’ attention. The main abstraction in Spark is a resilient distributed dataset (RDD), which offers good 
fault tolerance and allows jobs to perform computations in memory on large clusters. Thus, Spark becomes an 
attractive programming model to iterative MapReduce algorithms. 

 

IV. OVERVIEW OF FIMN 
 
The Frequent itemset mining on Neo4j (FIMN) is a framework mainly developed for the purpose of finding frequent 

itemsets in a database. In which random forest algorithm is applied for classification of data provided to the mining 
engine. The classification is done on three factors HLM, (High, low and medium). The classification process is handled 
by MapReduce job which performs the dynamic shrading.  The shrading involves running the separate instance for 
each individual job, which ensures the parallelization. It is new data partitioning method to well balance computing 
load among the cluster nodes. 

Random forest is a trademark term for an ensemble classifier that consists of many decision trees and outputs the 
class that is the mode of the classes output by individual trees. Random forests are collections of trees, all slightly 
different. It randomizes the algorithm, not the training data. How you randomize depends on the algorithm, for pick 
randomly from the k best options. It generally improves decision trees decisions. 
    Unlike single decision trees which are likely to suffer from high variance or high Bias Random Forests use averaging 
to find a natural balance between the two extremes. A random forest is a Meta estimator that fits a number of 
classifiable decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy 
and control over-fitting. 
 
ARCHITECTURE DIAGRAM 
 

 
 

Figure 1. System Architecture 
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     This Figure 1 shows the overall architecture of the system. The user first login through Google OAuth and inputs the 
datasets collected. Apply this to the Neo4j clusters then it will perform the random forest classification and MapReduce 
job will initialize the parallelization through shrading. The frequent itemsets will be reported and analysis, the output 
will be displayed on Neo4j. 
 
Dataset Collection 
     OAuth is a service that is complementary to and distinct from OpenID. OAuth is also distinct from OATH, which is 
reference architecture for authentication, not a standard for authorization. However, OAuth is directly related to 
OpenID Connect (OIDC) since OIDC is an authentication layer built on top of OAuth 2.0. 
     As the application deals with patients health records, the dataset collection is done based on the health history of 
several patients for a specific period of last 10 years. This information is collected on gathering information sources 
from internet and other hospital databases. The patient emancipation is generally deals with the health care based on the 
perspective that better outcomes are achieved when patients become active participants in their own health 
management. All the information collected is stored in CSV file as a comma separated values. 
 
Apply to Neo4j 
     Neo4j implements the property graph model efficiently down to the storage level. As opposed to graph processing 
or in-memory libraries, neo4j provides full database characteristics including acid transaction compliance, cluster 
support, and runtime failover, making it suitable to use graph data in production scenarios. 
     Some particular features make neo4j very popular among users, developers: 

 Materializing of relationships at creation time, resulting in no penalties for complex runtime queries. 
 Constant time traversals for relationships in the graph both in depth and in breadth due to efficient 

representation of nodes and relationships. 
 All relationships in neo4j are equally important and fast, making it possible to materialize and use 

new relationships later on to “shortcut” and speed up the domain data when new needs arise. 
     Compact storage and memory caching for graphs, resulting in efficient scale-up and billions of nodes in one 
database on moderate hardware. 
 
Random Forest Classification 
     With development of the information technology, the scale of data is increasing quickly. The massive data poses a 
great challenge for data processing and classification. Random Forest algorithm is a commonly used algorithm applied 
to data classification. But traditional Random Forest algorithm is not fit for the massive data. Google App Engine’s 
hadoop platform is a widely used open-source implementation of Google's distributed file system and the MapReduce 
framework, for scalable distributed computing or cloud computing. MapReduce programming model provides an 
efficient framework for processing large datasets in an extremely parallel mining. And it comes to being the most 
popular parallel model for data processing in cloud computing platform. However, designing the traditional machine 
learning algorithms with MapReduce programming framework is very necessary in dealing with massive datasets. In 
this project, we use scalable random forest approach to process the advertisement dataset. 
 
Run Mapreduce for Clusters 
     The three MapReduce jobs of our proposed FIMN framework are described in detail. 

 The first MapReduce job discovers all frequent items or frequent one-itemsets. In this phase, the input of Map 
tasks is a database, and the output of Reduce tasks is all frequent one-itemsets.  

 The second MapReduce job scans the database to generate k-itemsets by removing infrequent items in each 
transaction. 

 The last MapReduce job—the most complicated one of the three—constructs k-FIU-tree and mines all 
frequent k-itemsets. 
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Frequent Itemsets Mining 
     Datasets in modern data mining applications become excessively large; therefore, improving performance of FIM is 
a practical way of significantly shortening data mining time of the applications. The dataset given as input to the Neo4j 
graph database, FIMN framework will mine the frequent itemsets by classifying the data using random forest algorithm 
then it will be processed by Mapreduce technique. 
 
Report Generation 
     Thus the Frequent Itemsets mined will be displayed using the Neo4j graph database which was build to efficiently 
store, handle and query highly connected elements in your data model. With a powerful and flexible data model you 
can represent your real-world, variably structured information without a loss of richness. 
 
The various terminologies related to this project have been explained in this section 
 
Big data 
     Big data is the term for a collection of data sets so large and complex that it becomes difficult to process using on-
hand database management tools or traditional data processing applications. 
 
Data classification 
     In the field of data management, data classification as a part of Information Lifecycle Management (ILM) process 
can be defined as a tool for categorization of data to enable/help organization of data. 
 
Distributed Computing 
     Distributed computing is a field of computer science that studies distributed systems. A distributed system is a 
software system in which components located on networked computers communicate and coordinate their actions by 
passing messages. 
 
Clustering 
     Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group 
(called a cluster) are more similar to each other than to those in other groups (clusters). It is a main task of 
exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine 
learning, pattern recognition, image analysis, information retrieval, and bioinformatics. 

V. CONCLUSION 
 
     In this paper, we propose a new framework for frequent that works based on a novel structure called Nodeset to 

facilitate the process of mining frequent itemsets. Hence, depending on the nodesets, an efficient framework called 
FIMN (Frequent Itemsets Mining using Neo4j) is proposed to mine frequent itemsets in databases. The main advantage 
of the proposed algorithm would be the speed and on the other side, it encodes each and every node present on the tree 
(Pre-Order and Post Order). It consumes very less memory to run the task on dense datasets for parallelization.     
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