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ABSTRACT: Cloud computing may be defined as management and provision of resources, software, applications and 

information as services over the cloud (internet) on demand. Cloud computing is a model for enabling convenient, on 

demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and 

released with minimal management effort or service provider interaction [1]. With its ability to provide users 

dynamically scalable, shared resources over the Internet and avoid large upfront fixed costs, cloud computing has 

recently emerged as a promising hosting platform that performs an intelligent usage of a collection of services, 

applications, information and infrastructure comprised of pools of computer, network, information and storage 

resources. However along with these advantages, storing a large amount of data including critical information on the 

cloud motivates highly skilled hackers thus creating a need for the security to be considered as one of the top issues 

while considering Cloud Computing. In this paper we explain the cloud computing along with its open secure 

architecture advantages in brief and emphasize on various security threats in cloud computing also the existing methods 

to control them along with their pros and cons.  

 

I. INTRODUCTION 

 

Virtualization of servers in the cloud operates by adding a new layer to the software stackknown  as the  hypervisor [1] 

or Virtual Machine  Monitor  (VMM) [2]. The hypervisor encapsulates the hardware, allowing it to be used  by 

multiple operating system instances concurrently. This flexibility, coupled  with the  cost and performance advantages 

of sharing  the underlying  hardware,  has revolutionized the computing industry: large numbers (i.e. hundreds of 

thousands) of generic hardware  platforms,  using multi- core blade technology, are now coupled through high- 

performance networking  to produce  a generic  computing surface. Any subset of this collection can be combined to 

operate   in  tandem   for  a  particular   application   using  a multitude of operating  systems. 

 

Conceptually,  the hypervisor presents  a virtual  machine abstraction that  restricts  malicious  code, executing  within 

one  instance   of  an  operating   system,  from  affecting  a different  instance.  Unfortunately, hypervisors have 

introduced their own new security challenges: Adversaries now actively attempt to detect the  presence   of  an  

operating hypervisor in order to tailor attacks accordingly [3]. A wide range of hypervisor detection techniques have 

already appeared against popular systems such as VMWare, VirtualPC,   Bochs, Hydra,  Xen,  and  QEMU  [4].  Often, 

these techniques operate by exploiting  timing  differences between virtualized and non-virtualized operations [5]. 

Alternatively,  they detect  unusual  memory  locations  associated  with  key operating  system  data  structures [6]. For 

example,  the Red Pill technique works by using the SIDT X-86 instruction to determine the  location  in memory  of 

the interrupt descriptor table; a machine  running  above a hypervisor  will return  a location  much  higher  in memory 

than  one  that  is not  [7]. Following  hypervisor  detection, the adversary then  attacks  either  the operating  system, 

the virtual  switch (vSwitch) sharing  network  connectivity  bet- ween virtual machines, or the hypervisor itself [8]. 
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The presence of a hypervisor has no impact on the vulnerabilities associated with the operating  system. As a result, any 

exploit that leverages a known vulnerability will still operate successfully [9]. Although,  a remote  exploit gives the 

adversary control  of a single virtual machine,  by using the exploit in a virus the entire cloud could be compromised.  It 

is this vulnerability amplification that  poses the   most   significant   threat    to   the   future   of   cloud computing. 

   

 Direct  attacks  against  a  vSwitch  may  undermine the operation of multiple  virtual  machines  on  a single  host by 

denying  connectivity  to  all of them  simultaneously. The vSwitch  provides  the  same  functionality  as a phy- sical 

switch and in consequence exhibits the same vulnerabilities,   enabling   the   same   exploits   [10].  For example, 

Address Resolution Protocol  (ARP) spoofing, involves  the  interception  of  valid  network   packets  by sending fake 

ARP packets to a switch [11]. 

 

Hypervisor attacks involve the direct exploitation  of vulnerabilities  in the hypervisor. All virtual machines executing  

on  a hypervisor  have distinct  data  structures, separated  in hardware.  This separation  forms a semantic gap  [12]  

that   prevents   virtual   machines   from   having visibility  or  impact   upon   each  other’s  data  structures [13].   

Direct   Kernel   Structure   Manipulation (DKSM) bridges  the  semantic   gap  by  patching   virtual  machine data 

structures and redirecting  hypervisor accesses to shadow   copies.   This   allows   the   virtual   machine   to present  

false information to the hypervisor  regarding  the virtual machine  state, allowing implants,  such as rootkits [14], to 

persist without  detection. 

 

Virtualization   provides inherent  redundancy and  ap- pears to provide robust, large-scale, cost-effective avail- ability 

of shared  resources  [15]. However, this perception is tempered by the known risk of vulnerability  amplification and 

the paucity of knowledge regarding zero-day exploitation  in clouds: history has shown that lack of detection  does not 

imply lack of infection.  Current mitigation  techniques reviewed  by this  paper  have  already evolved based  on 

malware  detection  and  prevention,  se- cure  virtual   machine   managers,   and   cloud  resilience. These  three  

categories  and  their  roles  in preventing  an attacker  from gaining access to the cloud is illustrated  in Figure 1. 

Omitted from  Figure 1 are cloud  services that provide  authentication such  as lightweight  active  directory protocol  

servers  and  trusted  computing techniques as they are outside  the scope of this survey. Initially, the attacker  has to 

overcome  or bypass the  intrusion detection  and  prevention systems  typically  employed  at  the cloud   boundary.   

They  are  then   faced  with  a  secure hypervisor   usually  installed   on   a  single  host;   whose purpose   is  to  

restrict   access  to  kernel  and  hypervisor data structures. Finally, cloud resilience is used by a host to  restore   a  

single  compromised  or  failed  virtual  ma- chine to a known good state. Although not currently prevalent  throughout 

the  industry,  hypervisors  offer the opportunity to  restrict  the  attacker’s  access  to  the  base of the software stack. 

Since typically the number of vulnerabilities  is directly related to the number of source 

 

 
Figure  1 The three  cloud security techniques reviewed  by this paper:  intrusion  detection & prevention, secure  

hypervisors, and virtual machines. 
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lines of code  [16], this  would  allow tight  control  of the hardware  and  allow operating  system  designers  to  build 

successive layers on a secure  base of trust.  The small size of the hypervisor  also opens the door to formal reasoning 

concerning  its  security   properties  [17].  Unfortunately, these  ideas have yet to be cohesively integrated and their 

impact   upon   security   quantified.   In  the   sections   that follow we explore the building blocks that are available for 

improving  cloud security and assess them  on the basis of their performance  impact,  ability to reduce the attack  sur- 

face, detect  known and  zero-day  threats,  resolve detected threats,  and increase  attacker  workload by denying either 

surveillance or persistence. 

 

III. THREAT MODEL 

 

The   security   implementation  analyzed   in   this   survey address  the threat  model for intrusions employing remote 

control  outlined  in Figure 2. It may involve several steps including surveillance to determine if a vulnerability exists 

[18], use of an appropriate exploit or other  access method [18], privilege  escalation  [19], removing  exploit  artifacts, 

and hiding behavior [14]. Surveillance may involve obtain- ing a copy of the binary code and using reverse engineering 

[20,21] or  fuzzing  [22] to  facilitate  a broad  range  of attack   vectors   including   return   oriented   programming 

[23].  The   implant   then   persists   for  a  time   sufficient enough  to carry  out  some  malicious  effect, obtain  useful 

information, or propagate  intrusion to other systems. 

Unlike  the  time  to  execute  an  exploit,  the  time  spent in surveillance  and  persistence  may range  from  minutes to  

months  or  even  years depending  upon  the  intended effect. Moreover,  the presence  of an intrusion may never be 

detected  by network defenses but instead may be recognized   indirectly   due   to  either   a  deviation   from expected  

behavior,  or  may  be derived  from  intelligence sources. 

 

Nevertheless,  each cloud security technique represents an integral  building  block in the multilayered  defense of 

 

 
Figure  2 The threat model, detailing the process  from surveillance  to exploitation in the cloud. 

 

the  cloud.  Malware  detection   and  prevention  systems are  the  initial  line  of defense  in  preventing  an  attacker 

from gaining a foothold  on a cloud. The secure  hypervi- sors  present  a hardened code  base  that  restricts  access to  

hardware  to  all, but  the  most  privileged  operations. Lastly,  cloud  resilient  solutions   are  present   to  protect 

against  the  unknown   exploits,  which  may  allow  an  at- tacker to operate  on a cloud indefinitely. 

 

Malware  detection and  prevention 

Malware detection  was one of the first techniques implemented  after the introduction of hypervisors. To achieve this, 

researchers paired  the  proven  technology  of Intrusion Detection  Systems (IDS) with the  ability to hide in a virtual 

machine.  In this scenario,  the IDS still performs the  same  function   of  identifying  patterns of  malicious behavior 

on a system that  may be compromised [24]; for example a proof of concept based on the Snort IDS successfully 
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prevented  a Distributed Denial of Service (DDoS)  attack   [25].  This   implementation  installed   a virtual  machine  

that  ran  Snort  on  top  of the  VMware hypervisor  to monitor network  traffic to all guest virtual machines  attached  

to a virtual switch. Once  running,  the IDS  dealt   with  DDoS  attacks   in  two  steps:  Initially, attacking   computers  

were   blocked   by  Snort;   subsequently, the virtual server automatically moved the application  under  attack  to a 

new location  in the  cloud. This  demonstrated that  an  IDS can  function  inside  the cloud; however,  the  

implementation was just  as vulnerable  to  zero-day  attacks  as  non-virtualized  IDS’s  [26]: attacks  were  missed  

due  to  IDS  configuration and  the failure of signatures  to detect  new attacks. 

 

The Hybrid Virtual IDS is a solution  that leverages the strengths of the  cloud  and  improves  upon  the  previous 

Snort implementation [27]. The approach  combines resilience of a virtual IDS and the versatility offered by a host   

based  IDS.  This  is  possible  through  the  use  of integrity   checking  [28]  and  system  call  trace   analysis 

[29]. Integrity  checking  is a  static  detection   process  in which  a changed  file is compared to a gold standard to 

determine if the  change  is malicious.  System  call trace analysis dynamically  flags anomalous system  call behavior  

as potentially  dangerous.  These  two  approaches  are implemented inside  of a virtual  machine  to  provide  an 

isolated  environment. A custom  hypervisor  is then  used to ensure  the  isolation  between  all virtual  machines.  To 

provide   functionality   to  the   IDS,  the   hypervisor   has hooks that allow the inspection  of other guest virtual 

machines   running   on  the  hypervisor.  This  allows  the hybrid virtual IDS to remain  isolated from other  running 

virtual machines,  while still allowing it to access data from the virtual machines  it is monitoring. This technique 

performed well in testing conducted by the authors  of the Hybrid Virtual IDS, but returned unexpected performance 

results:  as the  IDS decreases  the  length  of time  between inspecting  of the monitored virtual machine, the workload 

processing  time did not increase linearly as to be expected and instead  became  erratic.  The  cause of this erratic  

performance  is open to additional  research. 

 

With  the introduction of a hypervisor and a virtualized IDS, it was only a matter  of time  before  firewalls were moved 

into the cloud. One of these virtual firewall implementations is VMwall [30], which runs in the privileged  virtual  

machine  that  controls  the  Xen  hypervisor and  uses virtual  machine  introspection [31]. This  is the process  of 

inspecting  the  data  structures of a  separate virtual machine. To enable this functionality, the Xen hypervisor has 

added hooks that capture  all network connections created  by a process. The data pertaining  to these  connections is 

then  passed to VMwall for analysis. The  connection is either  allowed or  blocked  by using  a whitelist  (a  list  of  

approved  processes  and  connection types).  To  deter  false data  during  introspection, kernel integrity   checking   

[32]  is  used  to  verify  the  state   of kernel data structures in the guest virtual machines.  This is necessary, as the 

primary  method  of inspecting  trafficis through these  data  structures; malicious  modification may compromise the 

monitoring of traffic. However, VMwall may be vulnerable  to  hijacking  of a whitelisted process  or  an  already  

established  connection. The  only method   of  detection    against   the   compromise  of  an approved  process  is 

through the  checksumming of the in-memory image  of that  process.  This  is performed by ensuring   that  the  hash  

of  a  process  has  not  changed from  that  of one  contained in the  whitelist.  Due  to  the performance impact of hash 

analysis, this method  is generally not implemented. Hijacking an established connection can be partially prevented  

through time outs associated  with  kernel  rules  contained in  the  whitelist. To  fully prevent  this  type  of 

compromise, deep  packet inspection  could  be used, but  is not  currently  employed by VMwall. Importantly, the 

employed introspection techniques cause a minimal performance impact: the add- itional overhead  is 7% for file 

transfers  from hypervisor to guest and 1% for file transfers  from a guest to the hypervisor.  Added  overhead  for  

Transmission Control  Protocol (TCP) and User Data Protocol (UDP) connections are negligible; increases are 

measured  in microseconds. 

 

An alternative approach to detection techniques, like VMwall  and  hybrid  IDS, are  prevention methods.  One security 

appliance  that  performs  prevention is Malaware, which is designed to prevent  malware that tailors attacks upon  

detection  of a hypervisor  [33]. To deter  this initial identification  of a virtual environment, a signature  based method   

is used.  In  this  instance,  a  signature  is an  in- struction that  should  not be executed  by an unprivileged process. As 

an example, when a process  such as Red Pill attempts to  run  the  SIDT instruction, it will be flagged as malicious.  

However,  as the  authors  of Malaware  have stated,   a  signature   based   approach   is  only   effective against  known  
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types  of  malware.  To  combat   zero-day threats,  two  behavior  based  approaches that  utilize  dy- namic  analysis 

are proposed  [34]. This could  be accomplished by first learning  the current process  and its page table  base  address.  

With  this,  it  is possible  to  check  if the  current instruction register  belongs  to  the  process’ code  pages.  If  this  

mapping   does  not  exist,  Malaware could flag the process  as malicious. The second  dynamic analysis  method  

suggested  is taint  tracking.  Changes  to the  system, otherwise  known  as taint,  are created,  when a process modifies 

any code or memory location. Ac- cordingly,  when  taint  is created  in monitored locations, the  offending  process  is  

immediately   flagged  as  malicious. An added benefit of taint tracking is it defeats malicious  code that  has been 

transformed to look harm- less, also known  as code  obfuscation  [35]. Once  loaded into  a monitored region,  the  

obfuscated  code  is immediately  marked  as tainted  and  the  associated  process  is flagged as malicious. 

Unfortunately, only the signature based  piece of the  detection  has been  implemented andno data relating to added 

overhead has been collected. However,  the  initial  detection   results   were  promising with a malware  detection  rate 

of 76%. Lastly, it is important  to  note  that  techniques that  alter  known  memory states,   such   as   address   space   

layout   randomization (ASLR) may  increase  the  difficulty of this  type  of taint tracking  [36]. 

 

Another   prevention  method,   guest  view  casting  [37], moves malware prevention from the guest virtual machine to  

the  hypervisor.  This  approach   reconstructs the  data structures of the guest for analysis at the hypervisor level. This   

is  achieved   by  translating   guest   virtual   memory addresses  to physical memory  addresses,  then  reading  the raw  

data  from  the  guest’s  virtual  hard  drive.  The  reassembled  state in the hypervisor  can then  be compared to the  

guest’s  state  using  viewing  tools  such  as  Windows Task Manager  and memory  dump  to display all processes in  

memory.  The  presence  of discrepancies   between  the two  states  may indicate  the  existence  of malware  in the 

guest. The authors  have labeled this method  of searching for discrepancies  between states as view comparison-based 

malware  detection. An outgrowth of this method  is to use anti-virus  software to scan the guest’s state from inside of 

the hypervisor.  The  use of anti-virus  outside  of the guest shows  that   it  identifies  malware  more   effectively  than 

anti-virus  running  inside  a virtual  machine.  Additionally, performance of anti-virus  is improved  outside  of the  

virtual  machine.  The  primary  drawback  to this approach  is the assumption that the hypervisor has not been 

compromised. The authors  agree that  malicious  code that  targets the hypervisor [38] can compromise their approach. 

Although  detection  and  prevention are important, the last  two  decades  have  demonstrated  that  it  is unlikely that  

malware  can be eliminated  completely  [39]. Security researchers  in  an  attempt to  understand  these  attacks have to  

rely on  system  logs that  lack integrity  [40] and are  often  incomplete   [41]. The  ReVirt  IDS [42], which runs  on  

UMLinux  [43]; was  created  in  an  attempt to improve  upon  these  inadequacies.  This  is accomplished by creating  

logs for all of the relevant  system level information  needed  to  replay  what  transpired at  an  instruction  by 

instruction level for  a specific  virtual  machine. This  allows administrators to determine all the  relevant information 

pertaining to an attack. The overhead of performing  these  functions   is  13-58%  for  kernel  tasks and up to 8% for 

logging tasks. 

 

Secure  virtual machine managers 

Hypervisors  have afforded  researchers with  new  security capabilities. However, the hypervisor itself has come under 

attack  as a way of gaining control  of a system  [44]. This has  led  to  the  introduction of  Secure  Hypervisors  that 

reduce   the   attack   surface   and   increase   reliability   by reducing  the  number   of lines  of code  [16]. sHype  

[45],designed  by IBM, increases  security  by taking the idea of control  flow enforcement first seen  in SELinux [46] 

and applying  those   controls   on  information  flows  between virtual   machines   through   a  mandatory  access  

control model.   Using  intricate   security   policies;  unfortunately, these  make  it difficult  to  guarantee  security  and  

can  be over  50,000  lines  of code  [47]. To  remove  this  level of complexity,  sHype  affords  the  same  control  

flow protections, but at the hypervisor  level and without  the need of a policy administrator. These information flows 

are maintained through  the use of a reference  monitor that decides what connections to accept and deny between 

virtual machines.  The sHypeapproach  creates a flexible architecture,  which  allows it to  support   many  different  

security modules  [48]. This is accomplished in around  11,000 lines of code; SELinux alone is over 85,000 lines of 

code. 

 

http://www.ijircce.com/


 

                   ISSN(Online): 2320-9801 

          ISSN (Print):  2320-9798    

International Journal of Innovative Research in Computer 

and Communication Engineering 

(A High Impact Factor, Monthly, Peer Reviewed Journal) 

Website: www.ijircce.com 

Vol. 8, Issue 2, February 2020 

  

Copyright to IJIRCCE                                                      DOI: 10.15680/IJIRCCE.2020. 0802014                                                     72  

    

The performance impact  ofsHype enforcement policies is less than  1% [45]. However, sHype’s primary  shortfall is 

that  it does  not  completely  protect  against  unauthorized transfer  of information between  two virtual machines  that 

are not  allowed to share  information. Figure 3 illustrates the problem: nodes  A, B, and  C represent three  different 

virtual  machines   and  all  are  connected  to  a  reference monitor.   Virtual  machines  A and  B are  not  allowed  to 

share information, but both are allowed to share information  with virtual  machine  C. A covert  channel  is created, 

when  virtual  machine   C  acts  as  an  intermediary  and passes  information  between  A  and  B. In  this  case  the 

reference monitor would not intervene, as it only sees information being transferred from A to C and from C to B. 

Fortunately,  the addition  of a Chinese  wall (communication rules) can be added to sHype to protect  against this 

covert channel  [49]. In this case, the rule would only allow two  of  the  three  virtual  machines   to  run  at  any  one 

time.   However,   this   method    has   the   drawback   of causing  a decrease  in performance of up  to  9.1% [50]. 

 

 
Figure  3 An example  of a covert channel,  where  node  A transfers information to node  B, through the intermediary 

node  C. 

 

This  performance  impact  can  be  mitigated  by perfor- ming  Chinese   wall  policy  checks  at  virtual  machine 

creation  and  then  caching  these  decisions.  Since, pol- icy changes  are  infrequent,  this  configuration  reduces the  

performance impact  to  less than  1% [51]. 

A different  direction  from control  flow enforcement is used in the noHype hypervisor [52]. This minimalist approach  

removes  as much  as possible  from  the  hyper- visor; unfortunately, no  published  numbers for  lines  of code   are  

available.  However,   the   first  prototype   was based  on  a stripped  down  version  of Xen 4.0; implying that  it falls 

somewhere  less than  1.6 million lines of code [53]. The  code  count  was reduced  by shrinking  the  size of the  

hypervisor  by following four  rules.  First, noHype pre-allocates  processor  cores and memory  to virtual ma- chines.  

This  allows  the  virtual  machine   to  control   its own  hardware,   which  improves   performance.  Second, each  

virtual  machine   is  assigned  its  own  I/O   device. Being  in  the   cloud,   it  is  assumed   that   these   virtual 

machines  only need  network  interface  cards  (NIC). The issue here is that  servers have a limited number of NICs. 

Thankfully, newer NICs take advantage  of Single-Root I/ O Virtualization [54], which allows them to present 

themselves  as multiple  NICs. Thus, each virtual machine on a server is able to receive its own NIC, even if there are 

more virtual machines than NICs. Third, noHypeprovides  the  user  with  a  predefined   guest  virtual  ma- chine in 

order  to control  the discovery of hardware.  This also  prevents  a  user  from  uploading  a  malicious  guest virtual   

machine,   which   could   attack   the   hypervisor. Lastly,  noHype  avoids  indirection  that  occurs  through the  

creation   of  virtual  cores  and  memory,  since  cores and   memory    are   assigned   directly   to   each   virtual 

machine.   These   four  principles   were  tested   against  a standard Xen  4.0 install  and  startup   time  was reduced 

by 1% in the noHype  implementation. However, noHypeloses  the  ability  to  perform   any  introspection  of  the 

guest virtual machines as the hypervisor is limited in functionality.   Thus,   a  virtual  machine   in  the  noHype cloud   

could   become   infected   without   noHype   being aware of the infection. 
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Another  popular  feature  of the  cloud  is live migration of virtual machines  [55]. This can be seamlessly ac- 

complished  with little downtime  thanks  to virtualization. However, migrations  lose the states  maintained by state- 

ful firewalls [56] and IDS’ [57]. These states can be maintained using  a network  security  enabled  hypervisor (NSE-

H)  designed  on  top  of  the  Xen  hypervisor  [58]. This  builds  on the  concepts  used  in secure  hypervisors, but  

adds  support  for secure  file transfers.  The  perform- ance  impact  of this  method   is measured   in  downtime, which  

is  the  time   a  virtual  machine   is  not   available during  transfer.  The  cost of securing  these  migrations  is up  to  a 

15% increase  in  downtime  versus  downtime  of 

non-secure transfers  [58]. This downtime  occurs  for two reasons  when  maintaining  the  security  context   of  the 

virtual  machines   being  migrated.  The  first  is  the  add- itional  time  needed  to securely  copy a virtual  machine’s 

memory  space from  one  host  to another.  The  second  is the  NSE-H  security  additions,   as  they  are  using  add- 

itional resources  on the system. 

 

Cloud resilience 

An often over-looked aspect of cloud computing is Resilience, defined  as the  ability for a system  to recover and  

continue   to  provide  services  when  a loss  of hard- ware  or  software  occurs  [59]. One  such  system,  Cloud 

Resilience  for Windows  (CReW)  [60], expands  the  idea of resilience  to  the  security  domain  through the  use  of 

strong  security in guest virtual machines  [61], and intro- spection  [62]. Implementation is on  top  of the  270,000 

plus lines of code that  comprise  the kernel-based  virtual machine  hypervisor [63]. This has enabled CReW to 

effectively prevent  attacks  from some rootkits  and repair any damage  they may have caused, but  at a cost to per- 

formance  as  the  number of  virtual  machines  increases or  security  level  is  raised.  At  a  strict  level  with  three 

virtual  machines,   CReW  adds  ~48%  increase   in  time needed   for  CPU   tasks   and   ~279%  increase   in  time 

required  for I/O  related  tasks. For the  paranoid  setting, CReW  adds  ~116%  increase  in  time  for  CPU  related 

tasks  and  adds  ~347% increase  in  time  for  I/O  related tasks [60]. 

 

A technique that  builds  upon  the  ideas  presented in CReW  and  supports other  operating  systems  is that  of 

hypervisor-based  efficient proactive recovery [64]. This approach   makes  the  assumption  that  no  matter   what 

defense is implemented on the cloud, a machine  will eventually  be maliciously  compromised or taken  offline. Thus,   

after  particular   failure  conditions   are  met,  the guest  virtual  machine  is refreshed  from  a gold standard. A  

prototype of  these  concepts   was  developed  using  a modified  Xen hypervisor  [65]. Testing  has  shown  there is a 

balance between  throughput and availability. Thus, a user  of this method  can choose  between  lower through- put   

and  higher   availability  or  higher   throughput  and lower availability when faults occur. 

 

The  Bear operating  system  is a minimalist  implemen- tation  that builds resiliency on top of a secure hypervisor [66]. 

A key design  choice  is the  strong  enforcement of separating   core  functionality   into  four  layers,  which  is typical 

of modern micro  kernels,  like the  MINIX opera- ting   system   [67].  Importantly,  the   attack   surface   is reduced  

with a shared  code  base (>50%) of 10,903 lines of code shared  between  the Bear Hypervisor  and Kernel. The size is 

attributable to a small custom  hypervisor  and small custom kernel. Resiliency is derived from non- deterministically 

refreshing  the  virtual  machines  on  thehypervisor  to a gold standard after a period of time. This refresh   is  done   by  

starting   a  second   virtual  machine from  the  known  valid state  and  then  transferring func- tionality  to it, all while 

simultaneously tearing  down  the first  virtual  machine.  By using  this  method,   control   is seamlessly   transferred  

between   virtual   machines   and without  an impact  to  performance. Also, any known  or zero-day  malware  present  

on the  torn  down  virtual  ma- chine  will not  be  present   on  the  newly  started  virtual machine. 

 

Comparative analysis 

Table 1 presents  a summary  comparison,  of the approa- ches based on reduction of the attack surface, prevention of 

zero-day  threats,  and  overhead.  The  “Reduces Attack Surface”  category   shows   that   all  of  the   technologies 

other  than  sHype  and  Bear  rely  on  a  large  code  base. This poses a concern,  as demonstrated by the authors  of 

“Reliability Issues  in  Open  Source  Software”, who  have shown that errors  occur at a rate of .09 defects per thou- 

sand  lines  of open  source  code.  This  problem  is worse for closed source  systems, with .57 defects per thousand 

lines of code. Although  the numbers will vary with code base  naturally,  this  result  that  indicates  Xen  will have144  
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defects,  KVM  25,  UMLinux  162,  sHype  and  Bear each  present  a single defect. An interesting comparison was provided  

between  open  source  software  and  closed source  software. Due to the partial unintended release of300,000  lines  of  VMware  

kernel  code;  the  code  could contain  up to 171 defects, which  is more  defects then  a full install  of UMLinux.  Obviously, 

sHypeand  Bear sys- tems  are a bare minimum install and have less function- ality when  compared to the  other  hypervisors.  This  

has led  to  the  sHype  architecture being  ported  to  the  Xen hypervisor by the authors  of “Building a MAC-Based Security 

Architecture for the Xen Open-Source Hypervisor”, which  has  the  net  effect of increasing  functionality  and potential  number of 

defects. The  key takeaway is that  a small  code  size and  open  source  distribution are  desir- able to  prove  a system  to  be 

reliable  and  secure.  How- ever,  closed  source  systems,  which  are  outside   of  the purview of this article, do exist and provide 

similar secu- rity features. Two such commercial hypervisors not reviewed are Citrix XenClient  andHyTrust. 

After evaluating  each system on its abilities to perform “Malware  Detection”   and   “Prevents   Zero-Days”;  there were two clear 

outliers. Malware detection  and prevention methods  primarily protect  against known threats,  because of their  use of whitelists  

and  signatures.  However, ReVirt is the outlier  in this category, as it provides capabilities to remove zero-days; unlike its 

counterparts, it has no ability to  detect  malware.  Secure  hypervisors  restrict  access  to the hypervisor but generally provide no 

malware detection abilities  or  zero-day  prevention.  Lastly, resilient  systems 

 

Cloud security 

implementation 

Reduces 

attack  surface 

Malware 

detection 

Mitigates  

zero-day threats 

Added 

overhead (%) 

(lines of code) 

Malaware 
> 725 K Yes No No data 

Guest view casting 
> 1,600 K Yes No Reduced up to 

70% 

Virtual snort 
> 300 K Yes No No data 

Hybrid IDS 
> 300 K Yes No ~4-36% 

VMwall ~ 1,600 K Yes No 1-7% 

ReVirt ~ 1,800 K No Yes 8-58% 

NSE-H > 1,600 K No No 15% 

Shype ~ 11 k No No < 1% 

Shype with Chinese wall in 

critical path 

> 1,600 K No No 9.10% 

Shype with Chinese wall 

outside critical path 

> 1,600  k No No < 1% 

NoHype 
< 1,600 K No No Reduced up to 1% 

CReW > 270 K Yes Yes ~48-347% 

Hypervisor-based proactive 

recovery 

~ 1,600 K Yes Yes ~8-12.7% 

Bear ~ 11 k Not applicable Yes < 1% 
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such  as CReW  and  hypervisor  based  proactive  recovery have  shown  promising   results   in  both   categories.   

The model of whitelists and signatures  is replaced  with restor- ation upon detection  of anomalous system behavior. 

Thus, both known malware and zero-days are removed from the system  when  it is restored  to a valid state.  Resilient 

sys- tems  do not  prevent  the  initial compromise from  known threats,  unlike malware prevention and detection  

systems. The outlier  in this group is Bear, which makes no attempt to check for anomalous  behavior.  Instead,  it 

assumes  the system will eventually be compromised and therefore refreshes  the  system  non-deterministically.  This  

has  the same  end  result  of removing  any known  or zero-day  at- tacks that may be present,  but also invalidates 

surveillance and  prevents  persistence.  Nevertheless,  the  effectiveness of resilient systems warrants  further  research. 

The  final category  of “Added Overhead”  is important, as no  technique should  overly impact  system  performance.  

Both  secure  hypervisors  and  malware  prevention and  detection   schemes   can  minimally   impact   and  in some 

cases improve performance. The larger resilient prototypes    such   as  CReW   and   hypervisor   proactive recovery 

have not  yet reached  this level of performance. Bear however,  has  had  a negligible  impact  on  perform- ance  when  

refreshing   virtual  machines.   Research  into future resilient system implementations should aim to maintain  the 

performance levels set by intrusion detection and prevention systems, secure  hypervisors,  and the Bear operating  

system. This can be achieved by leveraging the proven practices of either adding functionality  to the hypervisor as 

seen in Guest View Casting or reducing  the hypervisor  foot  print  as  accomplished  by  NoHype  and Bear. Once  

this performance requirement is met,  further capabilities can be added to resilient  systems, which allow for the 

creation  of a new cloud security architecture. 

 

IV. RELATED FIELDS OF WORK 

 

One  field of study that  has not been included  in this sur- vey is the idea of trust  [68] in regards to the unauthorized 

access of data. One approach  to handle trust in data secur- ity is that  of security labels in the cloud [69]. The goal of 

this approach  is to isolate customer virtual machines  from each  other  to prevent  data  leakage across  virtual  machi- 

nes. This work is an enhancement of a trusted  hypervisor that  extends  trust  to network  storage  [70]. In regards  to 

privacy, customers are concerned that their personal information will be leaked to those  who should  not  have access 

to it. A current solution  to this problem  is the use of encryption  with  access  control  [71]. Using  public  key 

cryptography  in the cloud, the user can be sure that  their data is safe and only they have access to it. 

 

V. CONCLUSION 

 

All of the  techniques reviewed  in  this  paper  have  produced  gains  in  making  cloud  computing  more  secure. 

Most  of the solutions  strive to race to the bottom  of the software  stack  to  combat  known  risks, rather  than  un- 

known zero-day risks. Moreover,  it is currently  left up to the cloud provider  to pick from a grab bag of techniques to 

secure their infrastructure. This has led to a diverse set of approaches in cloud  security, each with its own goals. The  

most  successful  approaches could  be  combined   to build new cloud infrastructure. A starting  point  would be to  

begin  with  the  idea  of resilience  as discussed  in  this paper. Non-determinism could then be added through process 

specific virtual machines.  Multiple  copies of these machines could refresh some processes in a non-deter- ministic  

manner.   Lastly, secure  migrations   of  processes and whole virtual machines  can be added. Combining  all these  

techniques could  provide  a cloud  computing environment that drastically increases attacker  workload. 
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