

 Volume 11, Issue 7, July 2023

Impact Factor: 8.379

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9341

Gesture Control
Abhishek N M1

, Dr. Prabhudeva S2

PG Student Dept. of Master of Computer Applications, Jawaharlal Nehru New College of Engineering,

Shivamogga, India
1

Director and Professor, Dept. of Master of Computer Applications, Jawaharlal Nehru New College of Engineering,

Shivamogga, India
2

ABSTRACT: Gesture control emerged as an intuitive and natural interface for human-computer interaction,

enabling users to interact with digital systems using hand movements. In this project work an overview of a Python-

based hand gesture control system is presented that leverages computer vision and machine learning techniques to

recognize and interpret hand gestures in real-time. A camera is utilized to capture video input of the user's hand

gestures. The video frames are then processed using computer vision algorithms to detect and track the user's hand

in the image. Various image processing techniques are applied to segment the hand region from the background and

extract relevant features of system interprets recognized gestures as commands or inputs for controlling digital

devices or applications. For example, a specific hand gesture could be associated with a mouse click or a keyboard

key press. The Python-based system utilizes appropriate libraries or APIs to send the corresponding commands to

the target device or application. Hand gesture control system offers several advantages, including ease of use,

intuitive interaction, and potential applications in various domains such as gaming, virtual reality, robotics, and

assistive technologies. The flexibility of the Python programming language allows for seamless integration with

existing software systems and libraries, enabling developers to build customized gesture control solutions. A

Python-based hand gesture control system that combines computer vision and machine learning techniques for real-

time gesture recognition and interpretation. The system offers a natural and intuitive interface for human-computer

interaction, opening up new possibilities for interactive applications in different domains.

I. INTRODUCTION

Gesture control is a fascinating technology that allows users to interact with electronic devices using hand movements

and gestures instead of traditional input methods such as keyboards or mouse. It offers a more intuitive and natural way

of communication, enabling users to control various applications and devices through simple hand gestures. Python,

with its extensive libraries and frameworks, has become a popular choice for implementing hand gesture control

systems. Its versatility and ease of use make it an ideal language for developing applications that involve computer

vision and machine learning, which are essential components of hand gesture recognition capturing and preprocessing

the video stream using computer vision libraries, such as OpenCV, to capture video frames from a camera or webcam.

These frames will be preprocessed to enhance image quality and extract relevant features hand detection and tracking

we will employ image processing techniques to detect and track the hand within each video frame. This can be

achieved by segmenting the hand region based on color, shape, or skin tone. Gesture recognition once the hand is

detected and tracked, machine learning algorithms applied, such as Convolutional Neural Networks (CNN), to

recognize and classify different hand gestures. This involves training a model on a dataset of labeled hand gesture

images throughout this project, we will leverage popular python libraries like OpenCV, TensorFlow, which provide

powerful tools for computer vision and machine learning tasks. By the end, we will have developed a functional hand

gesture control system that can be integrated into various applications and devices hand gesture control using python

opens up possibilities for more interactive and immersive user experiences, making it a valuable skill in fields like

robotics, virtual reality, gaming, and human-computer interaction. So let's dive into the exciting world of hand gesture

control and unleash the power of python

II. RELATED WORK

Here we have selected few key literatures after exhaustive literature survey and listed them as below:

1. B. Liao, J. Li, Z. Ju and G. Ouyang. [1] recognizes different hand gestures by a novel double-channel

convolutional neural network containing two input channels which are color images and depth images.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9342

2. Ahmad Puad Ismail et al [2], concentrates on how a system could detect, recognize and interpret the hand

gesture recognition through computer vision with the challenging factors which variability in pose, orientation,

location and scale.

3. K. H. Shibly et al. [3], proposes a virtual mouse system based on HCI using computer vision and hand

gestures. Gestures captured with a built-in camera or webcam and processed with color segmentation &

detection technique.

4. Akira Utsumi [4], every fragmented picture is standardized (reduced), and the picture's central point is

calculated, with the dimensions altered to suit the core of the physical item at the source of the XY plane.

5. Tomas Fryza and Tomas Bravenec [5] focused on hand gestures and finger detection in still images and video

sequences. The paper also contains a brief testing of different approaches to hand gesture detections as well as

the realization of the platform independent application written in Python using OpenCV libraries, that can

show a selected image or play a video sequence with highlighted recognized gestures.

III. PROBLEM STATEMENT

Develop a hand gesture control system using Python that allows users to interact with a computer or a digital device

without the need for physical input devices such as a keyboard or a mouse. The system should accurately recognize and

interpret hand gestures made by the user and perform corresponding actions based on the recognized gestures. The key

challenges in the problem domain are:

1. How to recognize person’s/user’s hand gesture?

2. What should be the minimum distance for recognizing hand gesture?

3. Variability in Lighting and Background

4. Real-Time Performance

5. Handling Hand Pose Variations

6. Privacy Concerns

7. Multimodal Challenges

However, in the solution domain, training a model on a dataset of labeled hand gesture images using CNN model, and

use popular python libraries like OpenCV, TensorFlow, which provide powerful tools for computer vision and machine

learning tasks. Further, a basic knowledge of computer vision, machine learning, and Python programming is used. It

also assumes the availability of a camera or a sensor capable of capturing hand gestures for recognition.

IV. DESIGN AND IMPLEMENTATION

Design and implementation of hand gesture control involves several components and steps. Here's an outline of the

process:

1. Data Acquisition: Capture video frames from a camera or a video source. Ensure good lighting conditions and a

clear background for better hand detection.

2. Preprocessing: Apply image preprocessing techniques to enhance the quality of the captured frames. Perform

operations such as resizing, noise reduction, and contrast adjustment.

3. Hand Detection: Utilize computer vision techniques to detect and isolate the hand region in the frames. This can be

achieved through methods like background subtraction, skin color segmentation, or machine learning-based hand

detection models.

4. Hand Tracking: Implement a hand tracking algorithm to track the movement of the detected hand over consecutive

frames. Techniques such as centroid tracking or Kalman filtering can be used for smooth tracking.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9343

5. Gesture Recognition: Define a set of gestures that you want to recognize and map them to specific actions or

commands.

Extract relevant features from the tracked hand, such as hand shape, finger positions, or hand movements. Utilize

machine learning algorithms (e.g., decision trees, support vector machines, or deep learning models) to train a gesture

recognition system. Alternatively, you can use rule-based approaches to recognize gestures based on specific hand

configurations or movements.

6. Gesture Interpretation: Translate the recognized gestures into meaningful actions or commands. For example, map

a specific gesture to moving a cursor, scrolling, clicking, or controlling a virtual object.

7. User Interface Interaction: Implement the necessary functionality to control the user interface or any other desired

system. Use appropriate libraries or APIs to interact with the target system, such as GUI frameworks, game engines, or

robotics platforms.

8. Testing and Refinement: Evaluate the performance of the hand gesture control system using various gestures and

scenarios. Collect user feedback and iteratively refine the system based on the results. Optimize parameters,

algorithms, or models to improve accuracy and responsiveness.

Control flow of the entire system is as shown below flow chart (figure 1).

V. IMPLEMENTATION

In this work, we have implemented our proposed model using python. The total work is divided into five modules, such

as data acquisition, preprocessing……

Sample code for pre-processing module:

import cv2

import numpy as np

def resize_image(image, target_size=(64, 64)):

 # Resize the input image to the target size

 return cv2.resize(image, target_size)

def normalize_image(image):

 # Normalize the image pixels to a range of [0, 1]

 return image / 255.0

def remove_background(image):

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

 # Threshold the blurred image to create a binary mask for the hand region

 _, binary_mask = cv2.threshold(blurred_image, 0, 255,

cv2.THRESH_BINARY+cv2.THRESH_OTSU)

 # Invert the binary mask to get the hand region as white and background as black

 binary_mask = cv2.bitwise_not(binary_mask)

 # Create a new image with black background

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9344

 background_removed_image = np.zeros_like(image, np.uint8)

 # Copy the hand region from the original image to the new image using the binary mask

 background_removed_image[binary_mask == 255] = image[binary_mask == 255]

 return background_removed_image

Code continu…..

Sample usage

if __name__ == "__main__":

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9345

 # Load the input image

 image_path = "path_to_your_image.jpg"

 image = cv2.imread(image_path)

 # Preprocess the image

 resized_image = resize_image(image)

 normalized_image = normalize_image(resized_image)

 processed_image = remove_background(normalized_image)

 # Display the preprocessed image

 cv2.imshow("Preprocessed Image", processed_image)

 cv2.waitKey(0)

 cv2.destroyAllWindows()

Sample code for gesture recognition module:

import cv2

import numpy as np

from tensorflow.keras.applications import VGG16

from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions

Load pre-trained VGG16 model

model = VGG16(weights='imagenet', include_top=True)

Initialize the webcam or use the video file path

Replace 0 with the path to your video file, e.g., "video.mp4"

cap = cv2.VideoCapture(0)

Image size expected by VGG16 model

input_shape = (224, 224)

while True:

 ret, frame = cap.read()

 if not ret:

 break

 # Preprocess the frame for VGG16

 resized_frame = cv2.resize(frame, input_shape)

 resized_frame = np.expand_dims(resized_frame, axis=0)

 preprocessed_frame = preprocess_input(resized_frame)

 # Make predictions using VGG16

 predictions = model.predict(preprocessed_frame)

 decoded_predictions = decode_predictions(predictions)[0]

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9346

 # Get the top prediction label and probability

 top_prediction = decoded_predictions[0]

 # Display the result on the frame

 label = f"{top_prediction[1]} ({top_prediction[2]*100:.2f}%)"

 cv2.putText(frame, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

 cv2.imshow("Hand Gesture Recognition", frame)

 # Break the loop if 'q' is pressed

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 cap.release()

 cv2.destroyAllWindows()

VI. RESULT ANALYSIS

Analyzing the results of a hand gesture control system using Python typically involves evaluating the system's

performance, accuracy, and any potential issues or limitations. Without specific details about the hand gesture control

system you are referring to, I'll provide a general overview of the steps you might take in result analysis:

I. Data Collection: Assess the process of data collection for training and testing the hand gesture control system.

Understand the size and diversity of the dataset, the number of gestures, and any potential biases.

II. Model Training: Identify the machine learning or computer vision model used for hand gesture recognition.

Analyze the training process, including hyper parameters, loss function, and convergence behavior.

III. Evaluation on Test Set: Measure the performance of the trained model on a separate test set to get an unbiased

estimate of its accuracy and generalization capabilities.

IV. Error Analysis: Examine misclassified or misinterpreted gestures to identify patterns of failure. This step helps

to understand the limitations of the model and potential areas for improvement.

V. Real-world Testing: Assess how well the hand gesture control system performs in real-world scenarios and

whether it is robust to changes in lighting conditions, backgrounds, or hand positions.

VI. User Experience (UX): If the system is meant for end-users, conduct usability tests to evaluate the user

experience and gather feedback for potential improvements.

VII. Documentation: Document the analysis process, results, and any insights gained. This documentation will be

valuable for future reference and reporting

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 7, July 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1107055 |

IJIRCCE©2023 | An ISO 9001:2008 Certified Journal | 9347

Snapshots of User Interface:

Figure1: Raw image and the resulting image after colour segmentation by threshold.

VII. CONCLUSION

One of the essential focal points of hand motion control is its normal and instinctive nature. By mimicking real-world

gestures, such as pointing, grabbing, or swiping, users can quickly learn and interact with devices without the need for

extensive training or complex instructions. This ease of use makes it accessible to a wide range of users, including

those with limited mobility or physical disabilities. Furthermore, hand gesture control has the potential to

revolutionize human-computer interaction in fields such as healthcare, automotive, and industrial sectors. In

healthcare, it can enable surgeons to manipulate medical images or control robotic-assisted surgery systems with

precise hand movements, reducing the need for physical contact and improving surgical precision. In the automotive

industry, it can enhance driver safety by allowing them to control infotainment systems or adjust settings without

taking their hands off the steering wheel. In conclusion, hand gesture control has significant potential and is poised to

revolutionize the way we interact with devices and systems. With continued advancements in technology and ongoing

research and development, we can expect further improvements in accuracy, reliability, and application diversity,

making hand gesture control an integral part of our daily lives.

REFERENCES

[1] B. Liao, J. Li, Z. Ju and G. Ouyang, "Hand Gesture Recognition with Generalized Hough Transform and DC-CNN

Using Realsense", Eighth International Conference on Information Science and Technology (ICIST), 2018, pp.

84-90.

[2] Ahmad Puad Ismail et al "Hand gesture recognition on python and opencv", First International Conference on

Electrical Energy and Power Engineering (ICEEPE 2020), Volume 1045, 2020.

[3] K. H. Shibly et al "Design and Development of Hand Gesture Based Virtual Mouse", 2019 1st International

Conference on Advances in Science Engineering and Robotics Technology (ICASERT), 2019, pp. 1-5.

[4] Akira Utsumi, "A Review of Vision-Based Hand Gestures Recognition", International Journal of Information

Technology and Knowledge Management (IJITKM), vol. 2, 2009, pp. 405-410.

[5] Tomas Fryza and Tomas Bravenec “Multiplatform System for Hand Gesture Recognition”, IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT), 2019

http://www.ijircce.com/

 8.379

	Snapshots of User Interface:
	REFERENCES
	[1] B. Liao, J. Li, Z. Ju and G. Ouyang, "Hand Gesture Recognition with Generalized Hough Transform and DC-CNN Using Realsense", Eighth International Conference on Information Science and Technology (ICIST), 2018, pp. 84-90.
	[2] Ahmad Puad Ismail et al "Hand gesture recognition on python and opencv", First International Conference on Electrical Energy and Power Engineering (ICEEPE 2020), Volume 1045, 2020.
	[3] K. H. Shibly et al "Design and Development of Hand Gesture Based Virtual Mouse", 2019 1st International Conference on Advances in Science Engineering and Robotics Technology (ICASERT), 2019, pp. 1-5.
	[4] Akira Utsumi, "A Review of Vision-Based Hand Gestures Recognition", International Journal of Information Technology and Knowledge Management (IJITKM), vol. 2, 2009, pp. 405-410.
	[5] Tomas Fryza and Tomas Bravenec “Multiplatform System for Hand Gesture Recognition”, IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2019

