

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305169 4854

Detecting Text or character in Natural Scenes
with Stroke Width Transform

Hemil A. Patel, Kishori S. Shekokar

M.E. Student, Department of Computer, Sigma Institute of Engineering, Vadodara, Gujarat, India

Head, Department of Computer, Sigma Institute of Engineering, Vadodara, Gujarat, India

ABSTRACT: Detecting text or character in an image of a natural scene, by using the SWT (Stroke Width Transform)
the approach of SWT is grouping pixels together in an intelligent way, instead of looking for separating features of
pixels. SWT is an image operator that seeks to find the value of stroke width for each image pixel, and describe its use
on the task of text detection in natural images. The SWT image operator is local and data dependent. The application
receives an RGB image to search in, and returns a new image where the text segments are marked. Due to the features
of the SWT, the resulting system is able to detect text anyhow of its scale, direction, font and language.

KEYWORDS: Text Detection, edge detection, Stroke Width Transform (SWT), Connected Component algorithm.

I. INTRODUCTION

Text or character detection in a natural scene is an important part of many Computer Vision tasks. As like, the
operation of (OCR) optical character recognition algorithms can be highly improved by first finding the regions of text
or character in the image. Text detection in natural scenes is a highly researched field, and there are numerous
approaches for solving this problem. Recovering text or character in natural environments provides contextual
indication for a wide variety of vision tasks. The performance of image retrieval algorithms depends heavily on the
performance of their text detection methods. As like If two book covers of the same design but with different text,
prove to be virtually identical without detecting and OCRing the text [1].

(a) (b)

Figure 1: (a) natural image (b) text detected images.

In above figure1 (a) is a natural image that contain text and the figure (b) is an output image which contain detected
text from input image. In natural images detection of text or character is much rigid, because there is far less text, and
there exists less overall structure with high variability both in geometry and appearance compare to scanned text. Most
text detection strategy limits the user to Specific languages, direction and scale of the text.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305169 4855

II. RELATED WORK

Text Detection approaches
Current text detection approaches can be broadly categorized into three groups: texture based approach, region-based
approach and hybrid approach.

2.1 Texture based approach
Texture-based approaches [5] are similar to the approaches of general object detection with sliding windows. They
utilize distinct textural properties of text regions to extract candidate sub-windows and the final outputs are formed by
merging these sub-windows. These approaches are able to deal with litter background scenes. But there are always
some limitation regions in outputs and they are very time consuming.

2.2 Region-based approach
Region-based approaches [5] attempt to use similarity standard of text, such as colour, size, stroke width, edge and
gradient information, pixels are together into connected components (CCs) and non-text CCs are filtered out with
geometric hypothesis or conditional random fields (CRFs). These approaches usually have lower computation cost and
the outputs can closely cover text regions. However, they may meet great challenges in litter background.

2.3 Hybrid approach
Hybrid approaches [5] seek to introduce textural property of text regions into region-based approach. These approaches
take advantages of both region based approaches which can closely cover text regions and texture-based approaches
which can estimate of the coarse text location in litter scenes. However, they are also time consuming.

II. PROPOSED WORK

The traditional method of detecting text in natural scenes images with Stroke Width Transform [1, 2], which uses
region-based approach for text detection. Most text detection schemes restrict the user to specific languages, scale and
direction of the text. Many helpful works have been done using Stroke Width Transform. Region-based approach uses
some rules of text, such as color, size, stroke width, edge and gradient information, to gather pixels jointly into
connected components (CCs) and non-text CCs are filtered out with geometric hypothesis or conditional random fields
(CRFs).Using this method detection of single character is very difficult. However, after reviewing different text
detection techniques we find out that the use of hybrid approach with Stroke Width Transform the detection of single
character and curvy letters (Arabic fonts, Gujarati fonts) smoothly.

4.1 Detection Algorithm

In Text detection algorithm there are different modules in which the whole system performs different tasks.

Figure 2: Text detection algorithm.

Image Edge
Detection SWT

Improve
find letter
candidates

Filtering
Improve Text

line
Aggregation

Word
Detection

Detected
Image

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305169 4856

4.1.1 Edge Map (Edge Detection)

In order to recover strokes, we first compute edges in the image using canny edge detector.

4.1.1.1 Canny Edge Detection

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges
in images. It was developed by John F. Canny in 1986. Canny also produced a computational theory of edge detection
explaining why the technique works [9]. The points at which image brightness changes sharply are typically organized
into a set of curved line segments termed edges.
Canny edge detection is a four step process.

1. A Gaussian blur is applied to clear any spotted, and free the image of noise.
2. A gradient operator is used for obtaining the gradients' intensity and direction.
3. Non-maximum suppression determines if the pixel is a better candidate for an edge than its neighbours.
4. Hysteresis thresholding finds where edges begin and end.

Canny discovered the optimal edge detection algorithm. An "optimal" edge detector means:
Good detection – algorithm should mark as many real edges in the image as possible.
Good localization – edges marked should be as near as possible to the edge in the real image.
Negligible response – a given edge in the image should only be marked once, and where possible, image noise should
not create false edges.
To satisfy these requirements Canny used the calculus of variations – a technique which finds the function which
optimizes a given functional. The optimal function in canny’s edge detector is described by the sum of four exponential
terms, but it can be approximated by the first derivative of a Gaussian.
The size of the Gaussian filter: the smoothing filter used in the first stage directly affects the results of the canny
algorithm. A smaller filter creates less blurring, and allow detection of small, sharp lines. A larger filter creates more
blurring, marking out the value of a given pixel over a larger area of the image. Larger blurring radiuses are more
useful for detecting larger, smoother edges.

4.1.2 SWT (The Stroke Width Transform)

The Stroke Width Transform is a local image operator which computes per pixel the width of the most likely stroke
containing the pixel [2]. The output of the SWT is an image of size equal to the size of the input image where each
element contains the width of the stroke associated with the pixel. We define a stroke to be a contiguous part of an
image that forms a band of a nearly constant width, as depicted in Figure 3(a). We do not assume to know the actual
width of the stroke but rather recover it.

(a) (b)

(c)
Figure 3: Execution of the SWT.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305169 4857

First, all pixels are initialized with ∞ as their stroke width. Then, we consider the edges as possible stroke boundaries,
and we wish to find the width of such stroke. If p is an edge pixel, the direction of the gradient is roughly perpendicular
to the orientation of the stroke boundary. Therefore, the next step is to calculate the gradient direction ݃௣ of the edge
pixels, and follow the ray ݎ = ݌ + ݊ ∗ g୮ (݊ > 0) until we find another edge pixel q. If the gradient direction ݃௤at q is
roughly opposite to݃௣, then each pixel in the ray is assigned the distance between p and q as their stroke width, unless it
already has a lower value. If an edge pixel q is not found, or ݃௤is not opposite to݃௣, the ray is discarded. In order to
accommodate both bright text on a dark background and dark text on a bright background, we need to apply the
algorithm twice: once with the ray direction ݃௣and once with –݃௣.

(a) (b)
Figure 4: Filling pixels with SWT values

As shown in Fig. 4 (b), SWT values in more complex situations, like corners, will not be true stroke widths after the
first pass described above. Therefore, we pass along each non-discarded ray again, compute median SWT value m of
all its pixels, and thenset all the pixels of the ray with SWT values above m to be equal to m.

4.1.3 Finding letter candidates

We now have a map of the most likely stroke-widths for each pixel in the original image. The next step is to group
these pixels into letter candidate. This will be done by first grouping pixels with similar stroke width, and then applying
several rules to distinguish the letter candidates.
The grouping of the image will be done by using a Connected Component algorithm. In order to allow smoothly
varying stroke widths in a letter, we will let two pixels to be grouped together if their SWT ratio is less than 3.0[2].
Now we must detect the connected components which can pass as letter candidates, by applying a set of fairly flexibly
rules. These rules are as follows:

1. The variance of the stroke-width within a component must not be too big. This helps with Rejecting foliage in
natural images, which are commonly mistaken for text.

2. The aspect ratio of a component must be within a small range of values, in order to reject long and narrow
components.

3. The ratio between the diameter of the component and its median stroke width to be less than a learned
threshold. This also helps reject long and narrow components.

4. Components whose size is too large or too small will also be ignored. This is done by limiting the length,
width, and pixel count of the component.

5. The ratio between the pixel count of the component and the amount of pixels in the bounding box of the
component should be within a bounded range. This rejects components that spread over a large space, yet have
a small pixel count, and components which cover most of their bounding box.

4.1.4 Grouping letters into text lines

Since single letters are not expected to appear in images, we will now attempt to group closely positioned letter
candidates into regions of text.
This filters out many falsely-identified letter candidates, and improves the reliability of the algorithm results.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305169 4858

Again, we will use a small set of rules to group letters together into regions of text. These rules will consider pairs of
letters, and are as follows:

1. Two letter candidates should have similar stroke width. For this reason we limit the ratio between the median
stroke-widths to be less than some threshold.

2. The ratio between the heights of the letters and between the widths of the letters must not Exceed 2.5. This is
due to capital letters next to lower case letters.

3. The distance between letters must not exceed three times the width of the wider one.
4. Characters of the same word are expected to have a similar color; therefore we compare the Average color of

the candidates for pairing.

Finally, text lines are broken into separate words, using a heuristic that computes a histogram of horizontal distances
between consecutive letters and estimates the distance threshold that separates intra-word letter distances from inter-
word letter distances.

IV. EXPERIMENTAL RESULTS

(a) (b) (c)

Figure 5: (a) Original image (b) Existing system output image (c) Proposed system output image

(a) (b) (c)

Figure 6: (a) Original image (b) Existing system output image (c) Proposed system output image.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 5, May 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0305169 4859

Table 3: Performance measurement of text detection.

V. CONCLUSION AND FUTURE WORK

In this present work it has been concluded that Detecting Text or character in Natural Scenes with Stroke Width
Transform allows us to apply the method to many fonts and languages. Connected component algorithm is having some
predefined rules. Existing algorithm uses two approaches like texture based and Region-based approaches so detection
of single character is not possible. The grouping of letters can be improved by considering the directions of the
recovered strokes. Using the hybrid approach curvy character and hand written letters can be detected. This may also
allow us to detect curved text lines. It allows identifying curvy letters better, such as Gujarati Fonts, Arabic fonts or
cursive handwriting. In future using some pre-processing operation, efficiency of the algorithm can be improved.

REFERENCES

1. Gili Werner.” Text Detection in Natural Scene with Stroke Width Transform”, ICBV, February, 2013.
2. B. Epshtein, E. Ofek, and Y. Wexler,“ Detecting text in natural scenes with stroke width transform,” Conference on Computer Vision and Pattern

Recognition(CVPR), IEEE, 2010.
3. S. Karthikeyan, VigneshJagadeesh and B.S. Manjunath” Learning bottom-up text attention maps for text detection using stroke width transform”,20th IEEE

International Conference on ICIP,2013.
4. AnharRisnumawan, Palaiahankote, Shivakumara, Chee Seng Chan, Chew Lim Tan. “A robust arbitrary text detection system for natural scene images”, Elsevier

2014.
5. Yuning Du, GenquanDuan, Haizhou Ai.” Context-based text detection in natural scenes”, In Proceedings of the ICIP, 19th International Conference, IEEE 2012.
6. Yao Li,Huchuan Lu” Scene Text detection via Stroke Width”,21st International Conference on Pattern Recognition (ICPR), IEEE 2012.
7. Huizhong Chen, Sam S. Tsai, Georg chroth, David M. Chen, RadekGrzeszczuk and Bernd Girod”robust text detection in natural images with edge-enhanced

maximally stable extremal regions”,18th IEEE International Conference ,ICIP,2011.
8. ChucaiYi,YingLi Tian” Text String Detection from Natural Scenes by Structure based Partition and Grouping ”,Image Processing, IEEE Transactions,2011.
9. J.Canny,” A Computational Approach to Edge Detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, 1986.
10. MasoudNosrati, RonakKarimi, Mehdi Hariri, Kamran Malekian. “Edge Detection Techniques in Processing Digital Images: Investigation of Canny Algorithm and

Gabor Method”. World Applied Programming, Vol (3), Issue (3), 2013.
11. Ramesh R. Manza, Bharatratna P. Gaikwad, Ganesh R.Manza. “Used of Various Edge Detection Operators for Feature Extraction in Video Scene”.UACEE

International Journal of Computer Science and its Applications - Volume 2: Issue 2, 2011.

0

0.2

0.4

0.6

0.8

1

Existing
System 1

Existing
System-2

Result 1 Result 2

Precision
Recall

 Precision Recall f-measure
(%)

Existing System1 0.34213 0.31718 32.91847

Existing System2 0.26137 0.27340 26.72525

Result 1 0.38449 0.39488 38.96167

Result 2 0.23183 0.35738 28.12284

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Existing
System1

Existing
System2

Result 1 Result 2

F-measure

