

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406284 12065

Automatic Bug Triage using Data Reduction
& Domain Specific Bug Classification

Nithesh.K.V1, Savitha.S.K2
M.Tech Student, Dept. of CSE, Bangalore Institute of Technology, Bengaluru, India1

Assistant Professor, Dept. of CSE, Bangalore Institute of Technology, Bengaluru, India2

ABSTRACT: Bugs in the software are impossible to avoid and hence dealing with them takes a lot of time. Great
amount of monetary value is exhausted by the companies in handling such bugs these days. Automatic Bug triage is an
inevitable step to fix the everyday bugs, which automatically assigns a person to a freshly generated bug in a right way.
To assign the bug to the expertise in the specific domain, domain specific bug assortment methods are enforced to lead
the bug management. Here, we tend to cover the matter of reducing the data for the sorting, i.e., a way to scale back the
size and amend the standard of the data. We work on the feature and instance extraction in the same order to scale back
information scale on the word and bug proportion. Our act also renders associate degree method to investing techniques
on working to create concentrated and high standard information of bugs in software packages.

KEYWORDS: Bug Triage; Data Reduction; Feature Extraction; Instance Extraction; Domain Specific Bug
Classification

I. INTRODUCTION
Bug repositories are the software repositories which store the bug details. Software bugs are generated each and

every day and fixing them is a big problem and expensive too. Bugs are retained as reports in the repository that
consists of the bug’s status whether it has been fixed or not and the detailed description of reproducing it. Here, we
have considered the bug data as the reports of the bugs in a repository.

The challenges that are associated with it which affects the productive utilization of the repositories are the minus

quality & the extensive data. Prominent quantities of raw bugs are generated and are put in the repositories due to the
large number of reported bugs every day [1]. It is quite a dare to look into this extensive data in the growth of the
project only by manual means. Techniques of the Software system also have to bear from the poor standard of bugs.
The distinctive features of such minus standard bugs are redundancy & disturbance. Unnecessary bugs take lot of fixed
time to maintain the bugs while the bugs that are disturbing may misguide the developers.

Bug triage is a long method of maintaining these bugs that intends to allot an exact person to solve a bug when it is

generated. In this existing system, the fresh bugs are manually sorted by a developer who is an expert. Manual doing it
is quite overpriced in consumption of time and lack in correctness too due to the large quantity of bugs that are reported
everyday and the deficiency of expertness to handle the bugs [1]. To annul this overpriced expenditure of doing it
manually, our present work has offered a machinelike bug management perspective, which enforces domain specific
bug methods to anticipate the proper person to solve the bug reports based on the domain.

Nevertheless, the extensive data & its minus quality in the repositories of the bugs stop the designed methods of
machinelike triaging of bugs. Software bug data are made by the developers and they are kind of free-form data and it
is very important to give a properly organized data [7]. Here, we cover the above mentioned trouble of reducing the
data for machinelike triage, i.e., to bring down the data of bug to preserve the task price of users and how to ameliorate
the standard of the data to ease the procedure of machinelike triage. Reduction of data for automatic method targets to
create a rich-standard and small bug data by getting rid of the words and reports, which are surplus or unnecessary.
Here we blend the present methods of feature extraction along with instance extraction to decrease the word and bug
proportion at a time. The final output data consists of less number of words and lesser written reports of the bugs than
the original bug set.

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406284 12066

II. RELATED WORK
Bugs that are freshly created are managed by hand of a proficient person where in he/she allots a new bug to a

software developer manually [1]. As there are plenty of day-to-day bugs and the deficiency of knowledge of different
variety of faults, manual way of doing it is a waste of time & it’s even less accurate. Feature and Instance Extraction
are applied randomly to reduce the noisy and redundant reports. Correctness of the bug manager will be slightly
diminished because of implementing Instance Extraction first which deletes the bug reports that are uninformative.
Bugs can be fixed by users, testers or developers [2]. Specialized bugs are maintained by Expert developers and they
rectify them whenever the bugs are generated. Searching document repositories of an organisation for experts gives a
cost effective solution for the work of expert finding [3]. We introduce some general expert schemes to finding
provided a document accumulation that is validated with the use of productive probabilistic patterns. One strategy is to
instantly model a skilful cognition grounded on the given documents they are associated with, while another locates
documents on the given topic, and then discovers the related proficient. Shaping authentic connections is significant to
the execution of Proficient Searching systems. The fundamental closest neighbour classifier bears from the general
depot of all prepared instances that are presented. Classification response time slows down when there is a huge
database of instances. When instances are noisy, accuracy of the classification may suffer [4]. By removing instances,
both problems can be relieved, but the standard used is distinctly assumed to be all effective over domains. We argue
against this perspective and propose an algorithm that rivals the existing algorithm. When evaluated on variety of
problems, both the algorithms don’t systematically outperform each other: consistency is very hard. We need to
develop systems that provide insights into class definitions’ structures to achieve the good results. We talk about the
possibility of such mechanisms and introduce some measures that could be of some use for the data miner. Bug
management structures play a cardinal function in affirming coactions among the users and the developers for many
projects [5]. To improve the tool support, we have qualitatively & quantitatively examined the problems enquired in a
group of large number of the reports from the ECLIPSE & other companies. We placed those problems in categories
and examined reaction times and by category of the project. Our consequences prove that the user’s role is not only
about filing bugs but their ongoing and active involvement is prominent for doing advancement on the reported bugs.

III. PROPOSED SYSTEM
A. Description of the Proposed System: To avoid the malice of manual procedure, an automatic bug triage has been

planned. In this plan, the domain specific bug classification techniques are applied to assign the proper developers
for bug reports depending on their domain expertise.

 Users can submit the bug reports in the web portal given.
 When the report is submitted, it automatically gets allotted to a domain expertise or a developer based on

the domain of the bugs.
 Developer or Domain expertise can accept the bug reports and solve it or reject it due to his/her time

constraint.
 Rejected bug report goes to the next domain expertise in the respective domain list automatically.
 Admin or the expert developer has every right to assign the bug report to any developer manually.

The Proposed system also focuses to increase the information of bug management system in these features,

that is to say
 To decrease the size of the proportions of words & bugs simultaneously.
 To ameliorate the bug triage’s accuracy.

A combinatory way of applying feature extraction first [8] [9] and then the instance extraction removes words

which are uninformative thereby increasing the accuracy of the automatic bug triage.

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406284 12067

Fig.1. System Architecture

B. Advantages of the Proposed System:
 Automatic bug sorting or triaging reduces the time cost in manual approach.
 Domain specific bug classification techniques are applied so that the bug reports are mechanically

assigned to the developer of the specific domain depending on the domain of the bug report.
 It reduces the dimensions scales of bugs and words at a time.
 It ameliorates the accuracy of the automatic bug triage as we apply the feature selection and instance

selection sequentially.

IV. PSEUDO CODE
Pseudo code for Instance and Feature Extraction

Intake set: Preparing band T with b bug reports & w words,

 data simplification order FE to IE

 last count is wf of words,

 last count is bi of reports,

 Output set: Diluted set Tfi for automatic bug manager

1) use FE to w words of T and calculate target values

for the words;

2) choose the top wf words of T and get a prepared

band Tf;

3) use IE to bi number of reports of Tf;

4) finish IE when the number of total reports is equal to

or less than bi and get the final prepared band Tfi.

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406284 12068

V. RESULTS
The results of the proposed system are shown in the following figures.

 Fig.2. Send Bug Report Fig.3. View Auto Assigned Bugs

In Fig.2, the page to send a bug report is shown and all the details that are necessary are entered and the bug report is
filed accordingly. Then the bugs are auto assigned to the experts based on the domain specified. Fig.3 shows the auto
assigned of the bugs portal of the respective user. Users can either accept or reject the bug report. If users reject it, then
the bug is automatically assigned to the next developer in line based on the ranking system.

Fig.4. Solution not yet provided Fig.5. Solution Provider

In Fig. 4, Users portal is shown where in when users check the assigned bugs, the pending solution is displayed. Then
users can click on ‘Give Solution’ to provide solution to the bug report. In Fig. 5, users can provide the solution status
i.e. fixed, pending etc and even solution of the bug report and submit it.

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406284 12069

Fig.6. Feature Selection of the bugs Fig.7. Instance Selection of the bugs

In Fig. 6 & 7, it’s shown that users can view all the bug reports submitted. They can view all the bugs based on the
features or separate bugs based on the specific instances like User interface defects.

VI. CONCLUSION AND FUTURE WORK
 Managements of bugs are pricey in terms of toil and consumption of time. Here, an automatic bug triage has been

made using domain specific bug classification technique to reduce the manual work there by saving the time cost. We
have also merged the important methods of data selection to bring down surmount of sets of bug information and
amend the quality of such bugs. We have provided a different set about to hold proficiencies on processing of the data
to create rich-quality & thinned out data of the bugs. In the succeeding work, we want to make the set of bug data a best
quality one by ameliorating the consequences of reduction of data in automatic bug management and we want to take
on a domain-specific task of the software.

REFERENCES
1. He Jiang, Zhilei Ren, and Yan Hu, “Towards effective bug triage with Software data reduction techniques” in IEEE. Trans. Knowledge and

Data Eng., Vol.27, No.1, January 2015.
2. G. C. Murphy, L. Hiew, and J. Anvik, “Who should fix this bug?” in Proc. 28th Int. Conf. Softw. Eng., pp. 361–370, May 2006.
3. M. de Rijke, Azzopardi, and K. Balog, L, “Formal models for expert finding in enterprise corpora,” in Proc. 29th Annu. Int. ACM SIGIR Conf.

Res. Develop. Inform. Retrieval, pp. 43–50, Aug. 2006.
4. C. Mellish & H. Brighton, “Advances in instance selection for instance-based learning algorithms,” in IEEE. Conf. Data Mining Knowl.

Discovery, vol. 6, no. 2, pp. 153–172, Apr. 2002.
5. T. Zimmermann, S. Breu, R. Premraj, & J. Sillito, “Information needs in bug reports: Improving cooperation between developers and users,” in

Proc. ACM Conf. Comput. Supported Cooperative Work, pp. 301–310, Feb. 2010.
6. S. Artzi, M. D. Ernst, A. Kie_zun, F. Tip, A. Paradkar, D. Dig and J. Dolby, “Finding bugs in web applications using dynamic test generation

and explicit-state model checking,” IEEE Softw., vol. 36, no. 4, pp. 474–494, Jul./Aug. 2010.
7. Bugzilla, (2014). [Online]. Available: http://bugzilla.org/
8. V. Bol_on-Canedo, N. S_anchez-Maro~no, and A. Alonso-Betanzos, “A review of feature selection methods on synthetic data,” in IEEE. Conf.

Knowl. Inform. Syst., vol. 34, no. 3, pp. 483–519, 2013.
9. A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient greedy feature selection for unsupervised learning,” in IEEE. Conf. Knowl. Inform. Syst.,

vol. 35, no. 2, pp. 285–310, May 2013.
10. Eclipse. (2014). [Online]. Available: http://eclipse.org/
11. A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient greedy feature selection for unsupervised learning,” in IEEE. Conf. Knowl. Inform. Syst.,

vol. 35, no. 2, pp. 285–310, May 2013.
12. V. Cerver_on and F. J. Ferri, “Another move toward the minimum consistent subset: A tabu search approach to the condensed nearest neighbor

rule,” IEEE Trans. Syst., Man, Cybern., Part B, Cybern., vol. 31, no. 3, pp. 408–413, Jun. 2001.
13. P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad tree-based k-means clustering algorithm,” IEEE Trans. Knowl. Data

Eng., vol. 24, no. 6, pp. 1146–1150, Jun. 2012.

http://bugzilla.org/
http://eclipse.org/

