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ABSTRACT: A new software module for coronary CTA analysis has been presented. The interactive processing is 

accelerated by non-supervised coronary artery extraction running in the background before the user opens the dataset. 

In this preliminary experiment, both accuracy and efficiency seem acceptable. Further work will include improved 

segmentation of calcifications and CPU time management of the automatic processing thread. However, this also 

results in increasing amounts of image data generated by each examination. The typical number of images has 

increased from one optimal phase of around 100 slices to multiple useful phases of 300-500 slices. Finding an efficient 

method to extract useful information from this amount of data has become a focus of medical image processing 

researchers. 
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I. INTRODUCTION 
 

Medical imaging is one of the most commonly used techniques in health-care for assisting with diagnosis and treatment 

of patients[1]. Medical imaging is unique in the diagnostic armamentarium because it is generally non-invasive, 

natively digital, and highly versatile in enabling detection, monitoring, and even prediction of disease. There are a 

variety of means that are used in creating images of the human body such as ultrasound, magnetic resonance, computer 

tomography, X-rays, etc. [2]. Advances in medical imaging have greatly improved the accuracy of screening for these 

diseases at earlier stages. However, 3D medical images such as computer tomography (CT) and magnetic resonance 

imaging (MRI) remain relatively expensive and their availability is limited in most parts of the world. 

 

The use of X-rays, on the other hand, is considered the most popular and affordable medical imaging technique 

worldwide. X-ray imaging is crucial in a variety of medical settings from community clinics to tertiary referral center. 

Chest X-Rays are widely used to detect infections, such as pneumonia, as well as other relevant pathologies such as 

lung nodules or pulmonary edema. Due to the effectiveness of chest radiographs, millions of CXRs are generated 

annually as an initial diagnostic tool, which accounts for about one-third of all medical imaging procedures [3]. 

However, the use of CXRs for diagnosis is non-trivial and requires a high level of skill, experience, and concentration 

from the radiologist [4]. It can be a considerable or altogether infeasible diagnostic workload to examine millions of 

CXRs, especially considering that there is a shortage of radiologists worldwide [5]. According to the Association of 

American Medical Colleges, it is estimated that the United States could experience such a shortfall of radiologists by 

2033 [6].  
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Fig 1: Lesion segmentation in lung CT scans 
 

This necessitates the demand for automated medical diagnostics tools to aid medical professionals. Given this fact, 

researchers continue to explore the use of different techniques and algorithms to develop automated and computer-

aided methods to assist radiologists in reading chest radiographs [7, 8]. Such an attempt was pioneered by Lodwick et. 

al. [9] through the development of a computer-aided detection (CAD) system. Later, many efforts have been made to 

improve the accuracy of the CAD system and commercialize it for clinical applications, including CAD4 TB, Riverain, 

and Delft imaging systems [10, 11]. However, due to the complex nature of CXRs, automatic and accurate detection of 

diseases remains unresolved in most of the existing CAD systems. CAD systems are mainly divided into four steps: 

image processing, region of interest (ROI) extraction, ROI features detection, and diseases classification according to 

the features. It is worth mentioning that classical approaches have involved manual feature extraction within this 

workflow. Recent development of machine learning algorithms, accumulation of voluminous medical images, and 

computational power open up new opportunities for building modern CAD systems [12]. For example, in reading chest 

radiographs, the task of extracting ROIs is now largely replaced by lung segmentation and, once a relevant lung region 

is segmented, shape irregularities, size, and other abnormalities of the lungs can be analyzed to identify clinical 

conditions such as pleural effusion, emphysema, and pneumothorax [13]. Hence, lung segmentation is one of the 

crucial steps in CAD-based disease detection using CXRs and ongoing success in effective segmentation will increase 

the scale and utility of CAD. 

 

II. RELATED WORKS 
 

Lung segmentation is a preliminary and fundamental task in computer-aided diagnostics systems. In light of this fact, 

the scientific community has shown great interest in this field and contributed to improving the lung segmentation in 

CXR. In this section, we reviewed some of the most relevant works in this research area. Based on current literature, 

lung segmentation techniques can be divided into two broad approaches i.e., 1) the classical approach using 

conventional image processing techniques and 2) convolutional neural networks (CNNs) based approaches. 

 

Saad et. al. [14] proposed a method for segmenting lung regions in CXR images using the canny edge filter and image 

morphology. Before deploying the edge filter, the method utilized the Euler number to improve the accuracy of lung 

edge detection. An implementation of this method produced segmentation results with an overall Dice score of 0.809 

on the JSRT dataset. Another edge-based method was proposed by Xu et. al. in [15], where the global edge and region 

force (ERF) field-based active shape model (ASM) called ERF-ASM is used to segment the lung field in CXR. This 
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method applied the principal component analysis (PCA) to learn the shape of the lung fields in advance, which is then 

applied to regularize the ERF-based segmentation and obtained the overall accuracy and sensitivity of 0.955 and 0.912, 

respectively on the JSRT dataset. Ahmad et. al. [16] presented another method based on an oriented Gaussian 

derivatives filter with seven orientations, combined with Fuzzy C-Means (FCM) clustering and thresholding to refine 

the lung region. The performance of this method greatly depends on the initial selection of the number of orientations 

and thresholds. This method reached a Jaccard index value of 0.870 and an accuracy of 0958 on the JSRT dataset. Due 

to the effectiveness of accurate thresholding and Gaussian derivatives, Kiran et. al.[17] presented a six-step lung 

segmentation methodology based on Sauvola thresholding and Gaussian derivative (ST-GD). This method achieved an 

accuracy of 0.9457 on the JSRT dataset and 0.9075 on the MC dataset. 

 

Besides its more obvious role in data augmentation, generative adversarial networks (GANs) are also being utilized in 

classification and segmentation applications. Thus, a research framework has recently been developed by Munawar et. 

al. in [26]. Given an input CXR, a GAN network is trained to generate a mask and, later, a discriminator distinguishes 

between ground truth and the generated mask. The authors trained four different discriminators, D1, D2, D3, and D4, 

among which D2 obtained the highest DC value of 0.9780 on the MC dataset. In another work, Chen et. al. [27] 

proposed semantic-aware GANs for unsupervised domain adaptation called SeUDA. The distinct feature of this method 

is that it detaches the segmentation deep neural network (DNN) from the domain adaptation process and does not 

require any labels from the test set. The SeUDA framework conducts image-to-image transformation to generate a 

source-like image which is directly forwarded to the DNN. This framework achieved a Dice value of 0.9559 and 

0.9342 for the right and left lung respectively on JSRT dataset. 

 
III. METHODOLOGY 

 
This section provides all relevant details and a step-by-step explanation of our lung segmentation methodology. The 

proposed framework consists of five major steps: image pre-processing and patch extraction, CNN-based classifier, an 

adapted U-Net-based patch segmentation, generation of an initial segmentation, and post-processing to obtain the final 

segmentation as shown in Figure 1. The details of each of these steps are explained in the following subsections. 

 

 
 

Fig 2: Segmentation Of Lung Veins 
 

The datasets used in this paper have been collected from the Tuberculosis Control Program of the Department of Health 

and Human Services of Montgomery County (MC), Maryland, USA (https://lhncbc.nlm.nih.gov/publication/pub9931) 

and Japanese Society of Radiological Technology which is commonly known as the JSRT database 

(http://db.jsrt.or.jp/eng.php). The 7 MC database and the JSRT database are publicly available and commonly used in 
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various areas of digital imaging including image processing, image enhancement, computer-aided diagnosis, and lung 

region segmentation. The MC dataset contains 138 posterior-anterior X-rays, of which 80 X-rays are normal and 58 are 

abnormal with a manifestation of tuberculosis. The X-rays are available in two different sizes either 4020 × 4892 or 

4892 × 4020 pixels. The JSRT dataset contains 247 images, among which 154 X-rays have lung nodules (100 

malignant cases, 54 benign cases) and 93 X-rays are normal without any lung nodules (non-nodules). The image size is 

2048 × 2048. Both the MC and JSRT dataset come with corresponding ground truth masks which make them 

convenient for supervised learning. We also used another proprietary dataset, which is provided by the University of 

Texas Medical Branch (UTMB). 

 

As mentioned in the previous section, we combined X-rays from three different sources which come in different sizes 

and formats. First, we downscaled all images to 512 × 512 to reduce the computational cost of model training. While 

downscaling the images, the MC X-rays were first placed in the center of the 4892 × 4892 background images and later 

downscaled to 512 × 512. Notice that, since the MC dataset has X-ray images in two different sizes, direct resizing 

could distort image proportion. For JSRT and UTMB datasets, we directly resized the images since the original images 

have identical width and height. After resizing the images, the pixel values of the X-ray images are normalized, i.e., the 

pixel intensity is mapped into the range between 0 and 1, where 0 is black and 1 is white. The values between 0 and 1 

represent the shades of gray. This is particularly important when combining datasets from separate institutions as the 

different datasets may have different ranges of pixel values. Moreover, image normalization or enhancement has a 

positive effect on the outcome of the deep learning model [30-33]. 

 

IV. RESULT ANALYSIS 
 

At this stage, we have obtained a precise contour along with segmentation. However, it can still contain noise and 

inaccuracies, which are mainly due to the prediction error of an individual Xray patch from either the CNN model or 

the U-Net model. For example, a background patch or a portion thereof could be erroneously segmented as lung region, 

as highlighted in Figure 4 in orange. Alternatively, a lung region could be segmented as a background patch, as marked 

in Figure 4 in red and yellow. These errors are sometimes inevitable as some of the background and lung region patches 

are difficult to distinguish when a whole X-ray image is divided into small patches. This problem is addressed by 

utilizing several image morphological operations such as erosion, dilation, closing, and connected component labeling 

algorithm in the post-processing step. The reader is referred to ref. [43-45] for a more detailed description of 

morphological operations. The erosion operation is used to erode tiny noises and separate noises weakly connected with 

the lung contour.  

 
 

Fig 3: Result analysis 
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However, deploying the erosion operation shrinks the lung region, which is recovered by the dilation operation. The 

connected component algorithm is used to identify the size of the remaining scattered noises after deploying the erosion 

operation. Subsequently, noises of size less than 3,000 pixels are. The necessity of this step is quite obvious as a good 

segmentation should only contain the two large lung parts. The region filling algorithm is utilized to fill in any internal 

gap laying inside the lung region. The structuring elements used in the above morphological operation are set as a 

square of size 11 × 11, an ellipse of size 9 × 9, and an ellipse of size 23 × 23 for the erosion, dilation, and closing 

operation, respectively. We choose the kernel size based on several experiments with the segmented masks. 

 

V. CONCLUSIONS 
 

In this work, we proposed a fully automated deep learning framework to increase the accuracy of lung segmentation in 

CXRs. The framework is divided into three major stages. First, we extract small patches from the original CXR images. 

Second, the extracted patches are classified and segmented by deploying an ensemble of a CNN model and an adapted 

U-Net model. Later, the patches are merged back to obtain two pre-segmentation masks. Subsequently, the 

presegmentation masks are combined together using the binary OR operation, which is later postprocessed to generate 

the final segmented mask. The novelty of this framework is that the two concurrently employed parallel deep learning 

models complement each other by capturing missing pixels in two pre-segmentation masks. Thus, merging the pre-

segmented masks helps to increase the overall segmentation accuracy, especially for the CXRs from patients affected 

by pulmonary disease. It is worth mentioning that, this framework can efficiently utilize small datasets for training the 

CNNs. 
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