

 Volume 10, Issue 5, May 2022

Impact Factor: 8.165

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1005088|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 3440

Web Real-Time Communication Scalability
Using Selective Forwarding Unit

Ashutosh Dwivedi1, Deepak Arora2, Puneet Sharma3

Department of Computer Science & Engineering, Amity University, Uttar Pradesh, Lucknow Campus, India

ABSTRACT: WebRTC is a web-based open platform which allow for real-time communication in the browser. It

contains network, audio, and video components needed in voice and video chat apps, as well as the essential block for

high-quality communications on the web. When implemented in a browser, these components can be accessed via a

JavaScript API, allowing developers to quickly create their own RTC web app. WebRTC is being standardised at the

W3C on an API level and at the IETF on a protocol level. The SFU (Selective Forwarding Unit) architecture for video

conferencing includes the following data transmission procedures between servers and the endpoints. All video streams

are received by the server from all endpoints. The server delivers each endpoint several copies of uncompressed video

streams from other participants. The endpoints combine the video streams that come in. The primary goal of this study

is to observe the performance of multi-party video conferencing using the Selective Forwarding Unit (SFU), as well as

how effectively WebRTC apps can be scaled using this method.

KEYWORDS: WebRTC, SFU, API, Video Conferencing.

I. INTRODUCTION

Most WebRTC apps, platforms, and services nowadays offer a ton more than the old one-to-one peer-to-peer WebRTC

use case, and they all utilise at least one media server to do so. For interoperability with pre-existing technologies such

as SIP for Voice over IP (VoIP), PSTN, or Flash (RTMP), that can only handle one 21 stream of a given type (audio,

video) at the time, media mixing capacities are 24 required, and a Multipoint Control Unit is chosen (MCU)[1]. Most

contemporary media servers, on the other side, are constructed as Selective Forwarding Units (SFU), a design that

allows for enhanced bandwidth adaptability with multiple encoding (simulcast) and Scalable Video Coding (SVC)

codecs while also being less CPU intensive on the server.

The latter enables significantly greater resiliency against network quality issues such as packet loss. Even when

focusing just on use cases that can be implemented with an SFU, there are still a lot of others. Video conferencing

(many-to-many, with everyone receiving and sending equally) and streaming / broadcasting (one-to-many, with one

sending and many receiving) can be the two 13 most popular use cases.

Although there are a variety of free source SFU media servers available, mediasoup is the best option for creating

multi-party video conferencing and real-time streaming programmes owing to its adaptability, performance, and

scalability. Simulcast, SVC, transfer BWE, and other cutting-edge capabilities are all included.

II. RELATED WORK

Simon Holm and Alexander Lööf published The design and architecture of a WebRTC application [2], a study that

looked at current design or architectural patterns for WebRTC apps and how they might be implemented using

JavaScript. The authors covered the Full mesh-Peer to Peer, MCU, and SFU design patterns, as well as the use cases

and limits of these current models. In the study, a model was shown that combined the Full mess model with Selective

Forwarding Unit model.

A study paper on P2P Live Video Streaming in WebRTC has been created by Florian Rhinow, Pablo Porto Veloso,

Carlos Puyelo, Stephen Barrett, and Eamonn O Nuallain [3]. This research project observes the viability of using 9

WebRTC to integrate live video streaming protocols into online applications. The 14 authors also observed the

constraints and potential future issues that might arise 3 when implementing complicated and scaled P2P systems.

Michele Papalini, Giovanna Carofiglio, Alberto Compagno, Angelo Mantellini, Luca Muscariello, Jacques Samain,

Mauro Sardara[4]. In the research 10 work they have created ICN-RTC. ICN-RTC is a real-time communication

architecture based on the newest SFU-based concept that takes advantage of Information-Centric Networking's

scalability features (ICN). They also offer the ICN-RTC synchronisation protocol, which allows media distribution to

utilise ICN's pull-based transport without adding additional delay. Hybrid ICN, an incrementally deployable ICN

solution leveraging IP, was used to implement ICNRTC. The preliminary findings are promising: Instead, then scaling

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1005088|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 3441

with the overall number of users in the conference, ICN-RTC scales with the number of active speakers. When

compared to regular WebRTC, this enables for ten times more participants while lowering the call's resource

requirements by over a hundred times.

Zahra Jafari [5]. The development process of a WebRTC-based E-exam system is detailed in this research report. This

web application is an online examination system that supports video and e-exam systems in Dari. It also uses flashcard

technology to assist students prepare for the exam. This online test system may be utilised in schools, and an

administrator can supervise and control the 19 actions of teachers and students. It is a safe and responsive web

application that is 8 3 tailored to Dari speakers and provides a simple platform for teachers and students to utilise. PHP

and MySQL are used to create the e-exam and flashcard sites, while NodeJS and WebRTC are used to create the video-

exam website. Overall, this online application is a simple, safe, and powerful Dari language testing system.

III. METHODOLOGY

The COVID-19 epidemic and the ensuing stay-at-home orders have resulted in major changes in people's working

habits. One of these shifts is the rising usage of video conferencing for communication and business meetings. In

December 2019, Zoom had 10 million daily meeting attendees; by April 2020, that number had increased to almost

300 million. Other video conferencing systems, such as Google Meet and Microsoft Teams, have seen considerable

daily participation increases as well. Furthermore, videoconferencing is expected to continue even after the pandemic

has passed, since Gartner expects that just 25% of corporate meetings will be held in person by 2024.

During the COVID-19 outbreak, WebRTC may have been the most essential collection of technologies employed.

WebRTC, a wide group of technologies that allows web browsers to perform audio, video, and real-time data

conversations, is used by all web-based videoconferencing services. The Internet Engineering Task Force (IETF)

established WebRTC technologies.

Server, which takes media streams as input and spread the received streams to the other end users as output [6]. The

first and foremost step is to exchange the necessary credentials (including MAC address) between media server and

local machine of participant. Since every router and anti-virus nowadays has some kind firewall to protect the

suspicious or unwanted connections and to hack the way through it, the second step is that participant should connect

to a STUN or TURN server, this step is not mandatory for systems with loose security. The third step is to identify the

media server with the help of signaling server [7]. Signaling is very important as it helps the end user to identify

which media server to connect. After successful identification of media server, the fourth step is to connect with the

media server which has all the necessary implementation to deliver the stream to all the respective participants [8]. As

soon as media server starts receiving more than one streams it will start processing and distributing video codecs to

each participant.

IV. IMPLEMENTATION

In this research study, the authors have used an SFU media server to enable browser-to-browser interaction while

ensuring scalability. As previously stated, the SFU is a centralized model in which user streams are processed, encoded,

and gets distributed among peers as a stream. This type of distribution is preferred when the requirement is to broadcast

the media or video/audio to maximum audience. Instead of normal WebRTC peer connection where the media producer

has to establish connections with all the consumers in a mesh, the producer can only send one stream of media to the

SFU media server that can be distributed among various the consumers. This kind of approach to distribute media

stream is more scalable on relatively less computing power in SFU than in MCU.

Mediasoup Media Server

A. Communication Client-Server Relationship
There is no signalling system provided by mediasoup for communication between clients and servers. It is up to the

programme to transmit them between clients and server via WebSocket, HTTP, or any other communication method,

and to exchange mediasoup relevant parameters, requests/responses, and alerts. Because most cases demand

bidirectional communication, a full-duplex channel is frequently necessary. However, the application can utilise the

same channel for messages that are not connected to mediasoup. Every authenticated WebSocket (WS) connection is

associated with a "peer" in the application. In mediasoup, there are no "peers" per se. The application may, however,

desire to specify "peers," which may be used to identify and associate a certain user account, WebSocket connection,

metadata, and a collection of mediasoup transporters, producers, and consumers. Producers and consumers of data. The

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1005088|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 3442

client-side programme loads its mediasoup device by using the server side of mediasoup router's Real Time Processing

capabilities.

B. Creating Transports
For transmitting and receiving, both mediasoup-client and libmediasoupclient require distinct WebRTC transports. In

most cases, the client programme builds those transports ahead of time, even before intending to send or receive media.

For media transmission:

 The mediasoup router must first construct a WebRTC transport.

 The client-side application was then cloned.

 The client application should mandatorily subscribe to the local transport's "connect" and "produce" events.

For media reception:

 The mediasoup router must first construct a WebRTC transport.

 The client-side application was then cloned.

 The client application should mandatorily subscribe to the local transport's "connect" event.

 If SCTP (also known as DataChannel in WebRTC) is wanted on such transports, enableSctp and other

SCTP-related options must be enabled.

C. Producing Media
The client-side programme can construct several audio and video media tracks on the send transport once it is built.

 A track is obtained by the application.

 It uses the local send transport's produce mechanism.

 If this is the initial call to the generate method, the transport will emit "connect."

 The transport will emit "produce," which will cause the application to send the event parameters to the

respective server and construct a Producer instance on the server.

 Finally, the produce method returns a Producer object on the client side.

D. Consuming Media
The client-side programme can consume numerous audio and video tracks on the receive transport once it is setup.

However, the sequence is reversed (here the consumer must be created in the server first).

 The client programme informs the server of its RTP capabilities.

 The server programme should determine if a certain producer may be consumed by the remote device (this

is, whether it supports the producer media codecs). It can use the canConsume technique to do this.

 The server application then invokes the consume method in the WebRTC transport that the client

constructed for receiving media, resulting in the creation of a server-side Consumer.

 It is strongly suggested that the serve-side consumer be started with paused: true and then resumed after the

remote endpoint has been formed.

 The consumer information and parameters are sent from the server application to the distant client

application, which executes the consume method in the local receive transport.

 If this is the initial call to the consume function, the transport will emit "connect."

 Finally, the consume function returns a Consumer object on the client side.

V. RESULTS AND DISCUSSIONS

KITE is used to run the tests. As a result, they're built in Java and use Selenium WebDriver to launch and manage client

browsers. If the page can be loaded, this value is true. Sender video check: true if the sender's video is visible and not a

still or blank picture. True if all the videos received from the SFU passed the video check for all 6 clients.

TABLE I: Test result

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1005088|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 3443

A.Quantitative Result

Table I shows the percentage of SUCCESS and FAILURES during the testing (a success indicates that the correct

video is presented and blank picture). There were no issues with the sender video being shown. However, some of the

movies received from the six clients in a room have failed. Jitsi has a great failure rate of 81 percent since still pictures

are frequently presented other than of video (the measured rate of bits are zero). Many end users or browsers are

missing one or more films, resulting in a high rate of failure of 43 percent for Janus and 42 percent for Kurento.

B. Video Quality Assessment

Figure 1: Video Quality Scores

Figure 1 shows the estimation of video quality scores. Although one may anticipate video quality to worsen as the

average bit rate recorded decreases, the video quality graphs remain amazingly flat until the end of the test. The

capacity of contemporary 20 video codecs to make a video weigh 15 to 30 times less than the original 12 uncompressed

video while maintaining a perceived high quality explains this counterintuitive conclusion. Before transmitting the

video to the SFU, each Chrome browser encoded it with VP8 for our test. After a few ffmpeg trials, it is discovered that

after the bit rate is set to around 150 kbps or below, the natural quality of the video we utilised for this load test

degrades 4 noticeably. Medooze has a bit rate of roughly 215 kbps at goal load. This is still sufficient to transmit the

selected video in a high-quality manner. The video quality of Kurento changes inexplicably depending on the load. It

quickly degrades, reaching its lowest image quality at around 100 participants. Surprisingly, when more people sign up

for the test, the image quality increases, reaching around 130 people before decreasing again.

VI. CONCLUSION

Because of Mediasoup, it is now feasible to scale WebRTC by utilising SFUs. The primary emphasis of this research

was placed on the scalability approach developed at SFU. Additional metrics and tests on the client side, such as the

audio quality, are 11 currently being developed and will be carried out on all of the supported browsers 23 in order to

investigate the influence that browser-specific WebRTC implementations have on the findings. The addition of CPU,

RAM, and bandwidth estimation probes to the server will assist us in determining the extent to which the server is able

to accommodate increased user demand. In order to simulate a wider range of video conferencing use cases, we plan to

make the number of rooms as well as the number of users that can be accommodated in each room into a test run

variable. In order to make this effort more comprehensive, we would like to include broadcasting and streaming as part

of it.

REFERENCES

[1] Emmanuel André, Nicolas Le Breton, Augustin Lemesle, Ludovic Roux, Alexandre Gouaillard, "Comparative

Study of WebRTC Open Source SFUs for Video Conferencing", 2016, 2018 Principles, Systems and

Applications of IP Telecommunications (IPTComm)

[2] Simon Holm and Alexander Lööf, “The Design and Architecture of a WebRTC Application”, Independent thesis

Basic level (Bachelor’s Degree), Malmö University, 2019

[3] Florian Rhinow, Pablo Porto Veloso, Carlos Puyelo, Stephen Barrett, and Eamonn O Nuallain, “P2P live video

streaming in WebRTC”, School of Computer Science and Statistics, Trinity College Dublin, 2014

[4] Michele Papalini, Giovanna Carofiglio, Alberto Compagno, Angelo Mantellini, Luca Muscariello, Jacques

Samain, Mauro SardaraOn the Scalability of WebRTC with Information-Centric Networking, 2019 IEEE 4th

International Conference on Computer and Communication Systems (ICCCS)

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1005088|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 3444

[5] Zahra Jafari WebRTC-based E-exam System, Submitted to American University of Central Asia, 2021.

[6] Gonca Bakar, Riza Arda Kirmizioglu, A. Murat Tekalp, "Motion-Based Rate Adaptation in WebRTC

Videoconferencing Using Scalable Video Coding", 2015, IEEE Transactions on Multimedia (Volume: 21, Issue:

2, Feb. 2019)

[7] M. Westerlund and S. Wenger, RFC 7667: RTP Topologies, IETF, Nov. 2015. [Online]. Available:

https://datatracker.ietf.org/doc/rfc7667/

[8] B. Grozev, L. Marinov, L. Marinov, and E. Ivov, “Last N: relevancebased selectivity for forwarding video in

multimedia conferences,” in Proceedings of the 25th ACM Workshop on Network and Operating Systems

Support for Digital Audio and Video, 2015.

http://www.ijircce.com/

8.165

