

(A High Impact Factor, Monthly, Peer Reviewed Journal) Website: <u>www.ijircce.com</u> Vol. 6, Issue 12, December 2018

Most Trending Topics with Pre-learned Knowledge in Twitter

Leena Patil¹, Kanchan Doke²

P.G. Student, Department of Computer Engineering, Bharati Vidyapeeth College of Engineering, Navi Mumbai,

Maharashtra, India¹

Associate Professor, Department of Computer Engineering, Bharati Vidyapeeth College of Engineering, Navi Mumbai,

Maharashtra, India²

ABSTRACT: Finding trending topic from the large amount of user-generated content (UGC) in social media helps to make easier lots of downstream applications of intelligent computing. Topic models, as one of the most powerful algorithms, have been mostly used to discover the similar patterns in text collections. The weakness of topic models is that they need documents with particular length to provide reliable statistics for generating coherent topics. Tweets from the users are mostly short and noisy, in twitter. Observations of word co-occurrences are inconceivable for topic model so obtain better results, previous work tried to incorporate prior knowledge to deal with this problem. However, this strategy is not practical for the fast evolving UGC in Twitter. We first cluster the users according to the retweet network, and the user's interests are mined as the prior knowledge, in this paper. Such data are then applied to improve the performance of topic learning. Users in the same community usually share similar interests, which will result in less noisy sub-data sets is the potential cause for the effectiveness. Our algorithm pre-learns two types of interest knowledge from the data set: the interest-word-sets and a tweet interest preference matrix. A dedicated background model is introduced further to judge whether a word is drawn from the background noise. Experiments on two real life twitter data sets show that our model achieves significant improvements over state-of-the-art baselines.

KEYWORDS: Topic model, social network, short texts.

I. INTRODUCTION

The tremendous amount of information generated by Online Social Networks (OSNs) has attracted enormous attention. Users in mobile social networks can share locations, textual content and videos with their friends, which raise great challenges for the existing data mining techniques. Topic modelling is one of the fundamental problems in the data mining applications. Statistical topic models, such as PLSA and LDA, provide powerful frameworks for analysing latent semantics underlying the news datasets. Naturally, researchers also apply them on social textual collections to discovering the fast evolving topics.

However, one important attribute of social texts is the extremely short length, which significantly deteriorates the performance of traditional topic models. In other words, the co-occurrence of words in tweets is not sufficient for topic models to discover latent patterns. Due to the ineffectiveness of traditional topic models on short texts, researchers tried to incorporate external knowledge to improve the topic modelling performance. Weng et al. propose to combine all the tweets of an individual into a single document. However, this approach does not reduce the noise inside. Conversely, it may make the word co-occurrences more puzzling. Some other studies also point out that combining or splitting documents contributes little to the final results of topic models. Zhao et al. propose the Twitter-LDA, which assumes that each tweet only has one topic. However, this is not a reasonable hypothesis. For example, the short tweet, "Financing education is expensive for the government", is essentially related to two topics which are "Education" and "Economy". The strong constrain may deteriorate the modelperformance. Another train of thought is to incorporate prior knowledge, and several knowledge-based models have been proposed to optimize the basic LDAmodel. For example, MDK-LDA leverages synonym and antonym sets (called s-set) extracted from Word Net to

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: <u>www.ijircce.com</u>

Vol. 6, Issue 12, December 2018

generate more meaningful topics. It assumes that words are drawn based on not only topics but also s-sets. DF-LDA takes domain knowledge in the form of must-links (i.e., words should occur together) and cannot-links (i.e., words should occur together) to restrain the distributions of topics. All these models are based on one assumption that the knowledge introduced is correct, and it can also be easily obtained. However, the rapidly evolving data in social media makes it difficult to obtain proper prior knowledge. In this paper, we propose a novel topic model called SILDA (LDA with Social Interest). We develop the model from two ways to achieve better performance: one is to promote the distinctiveness of topics by incorporating the interest knowledge. The other is to reduce the background noise. In the promoting process, the interests are regarded as prior knowledge, which is very similar to the must-links. However, discovering proper prior knowledge for the rapidly evolving tweets is extraordinarily difficult. Here we propose to learn it from the dataset itself, and then apply it to guide the model inference. In order to make the learned knowledge reliable, we first divide the dataset into several less noisy sub-datasets. The main reason why a traditional topic model performs poorly is that the noisy and short tweets overwhelm the valid co-occurrence observations. With the partition, texts in the same sub-dataset would share similar topics, and thereby be more concentrated. Thus it is convincing that the learned knowledge is better. According to the users' relationships in twitter, we can conduct many kinds of partition methods. In this paper, we apply the re-tweeting behaviour of users. An individual retweet another only when he or she reads and approves the content. Users who are strongly connected by re-tweeting links are more probable to share similar interests. Our model mines two types of knowledge from the non-overlapping sub-datasets: the interest-wordsets and the tweet-interest preference matrix. In fact, most tweets are strongly related to the authors' interests. Thus in the generative process, we add a new latent variable s denoting the interests, and assume a new topic distribution of topics overs. In other words, tweets are assigned with a higher probability to the topics which are related to its author's interests. What is more, the interest-word-set will be promoted as a whole to make the final topics more coherent. In the noise removing process, a Bernoulli distribution is introduced to determine whether the word is from background noise. If the word has a higher probability drawn from the background model, it would be regarded as unnecessary information, thus it would remove from the learning phase. This step will remove many frequent but meaningless words such as the emoticons. Before going further, we discuss something about the partition methods. In our model, we treat the individuals as nodes, and assign an edge to two users if one person re-tweets any tweet of the other. The weight of an edge is defined as there-tweeting counts. The larger the weight is, the closer the two nodes are. Given the re-tweeting network, the simplest way for partition is to apply community detection algorithms. Many studies have been done in this field.

II. RELATED WORK

Traditional topic models, such as LDA and PLSA, provide powerful statistical frameworks to discover the latent topics in large text collections. Based on the observation of word co-occurrences, words with the same meanings are aggregated. Such unsupervised models are first proposed for news data which is rather longer than tweets. Previous studies noticed traditional topic models always perform poor on tweet datasets which are extremely short and noisy. However, witnessing the dramatic increase of online social media, many studies apply LDA as a basic method to explore the latent topical information in Twitter. Weng et al. combine all the tweets of an individual document to increase the documents length. However, it can hardly improve the model's performance. Some other work assumes that each tweet has exactly one topic. Actually, it is not a very reasonable hypothesis.

For example, a single tweet ``Financing education is expensive for the government" is distinctly related to two topics ``Education" and ``Economy". Some other work which does not focus on social media datasets can give us some inspirations. The knowledge-based models are proposed to incorporate prior knowledges to optimize the topic modeling. Chen et al. leverage domain knowledge extracted from the WordNet to help analyze datasets. Ramage et al. restrain the documents only to choose the topics corresponding to the known labels to produce better topics in labeled datasets. However, finding proper prior knowledge for tweet datasets is an extremely difficult task. Moreover, incorrect knowledge always results in good looking results, which however may not _t the dataset itself. For example, topics with good word descriptions may be mainly affected by the prior knowledge but not by the dataset itself.

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: <u>www.ijircce.com</u>

Vol. 6, Issue 12, December 2018

In order to solve these problems, researchers try to take advantage of the knowledge underlying the data, such as social relations, citation links and temporal information. Typically, by adding the network information to the similar function of PLSA, Mei et al. propose a very general framework, called NetPLSA, to model a kind of problems in which the datasets have accompanied network structures. Wang et al. analyze the topic sentiment of tweets with hashtag (``#'') which is a symbol manually de_ned as ``topic'' in social media to express common interests. All these studies have strong relationships with our proposed model, but none of them focuses on improve the model performance on the short tweets. With increasing popularity of social media, making topic models produce more coherent topics is stimulating more and more interests. Social text analysis has been a hot research spot for quite a few years. Many techniques have been proposed to mine the implicit information hidden in the social networks.

Zhou et al. propose a probabilistic model to extract the e communities based on the content of communication documents. The retweeting which is a kind of subjective behavior of individuals is always applied to analyze the propagation of events. Meanwhile, it is also considered as a good representation of users' interest or the content preferences. Combining textual content with retweeting networks is a very interesting _eld to perform topic modeling. However, very little attention has been paid in this _eld. Another very important phase in our model is to cluster users in the retweeting network. Many algorithms have been proposed to discover communities.Wu et al. propose a very comprehensive demonstration for spectral clustering applied in community detection. Since detecting community is a complex but well studied _eld, we do not describe too much detail in this paper. To overcome the sparsity problem of social networks, we apply the smart local moving (SLM) algorithm whose ef_ciency has been demonstrated by many previous studies.

III. TOPIC MODELING ISSUE

Figure 1: Topic modeling issue

In existing system topic modeling module has issue that it is unable to extract proper data from source. The structure of output is not matching with our required format. Problematic graphical model of topic modeling is as shown in previous figure.

(A High Impact Factor, Monthly, Peer Reviewed Journal) Website: <u>www.ijircce.com</u> Vol. 6, Issue 12, December 2018

IV.LDA FRAMEWORK

Figure 2: LDA framework

Graphical representation of LDA framework model is as shown in above figure. LDA framework is only used to analyse the twitter data. This framework is unable to extract the data in proper format.

Sr. No.	Paper	Methodology	Feature Set	Advantages	Limitations
1.	A smart local	SLA Algorithm	Data extraction	Provides good	Large number of
	moving algorithm		from source like	results only in	iterations due to
	for large-scale		twitter data	small scale	huge data which
	modularity-based		sorce	systems	cannot be
	community				handled.
	detection				
2.	ETM: Entity	Entity Topic	To design topic	This technique	Problem is
	Topic Models for	Model (ETM)	model	solve the	occurred in
	Mining			problem of	entity
	Documents			word co-	information
	Associated with			occurrence in	document of
	Entities			pairs of topic	designing topic
				and entity	model.
				model	
3.	Predicting the	Social networks	Popularity of	Tracks or	Works in
	content	using PCA	contents in	captures the	iterative manner
	dissemination		social network	users behaviour	which results in
	trends by repost				loss of
	behaviormodeling				performance
	in mobile social				
	networks				
4.	Large-Scale	Integreative	Decision	On the basis of	Unable to run in
	High-Precision	algorithm	agregation	majority voting,	real-time close-
	Topic Modeling			algorithm works	loop iteration
	on Twitter				because of data-
					drift.

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 6, Issue 12, December 2018

5.	Twitterrank:	LDA framework	Analysis of data	LDA framework	LDA framework
	Finding topic-		-	is used to	only analyse the
	sensitive			analyse the	data, unable to
	influential			large amount of	extract the data
	Twitterers			data	from sources.
6.	Emerging Topic	Real Time	Analysis od data	Real Time	Real Time
	Detection for	Framework		Framework is	Framework only
	Organizations			used to crawling	analyse the data.
	from Microblogs			the data,	
				discover topics	
				and to identify	
				the topics.	
7.	Personalization	Local Search	Location-based	Based on	Give best result
	and Context-		services	current user	locally only.
	awareness in			location, data	
	Social Local			emerged	
	Search: State-of-			quickly.	
	the-art and Future				
	Research				
-	Challenges			~	~
8.	Influence	Biased density	Active users	Detect	Communications
	Propagation	metric		interaction with	between active
	Model for Clique-			neighbourhood	users only
	Based				
	Community Detection in				
	Social Networks				
0	INDEDENDENT	Plind course	Indonandant	Multimodia data	Only analyze the
9.	COMPONENT	soparation	component	intelligently	data
	ANALVSIS IN	method	analysis ICA	processed	uata
		memou		processed	
	MODELING				
10	Community	Community	Topology based	Analyse	Only analysis of
10.	detection ·	detection	and tonic based	community data	community data
	topological vs	approach	and topic bused	community data	is done
	topical	"PPI outin			
	10p				

(A High Impact Factor, Monthly, Peer Reviewed Journal) Website: <u>www.ijircce.com</u> Vol. 6, Issue 12, December 2018

V. REIMPLEMENTING THE PROPOSED SYSTEM

Figure 3: Three-tier architecture

In this system we follow three tier system architecture as shown in previous figure. The twitter data / content added to the database using twitter API or form. The heading, content, hashtags and cities are added to database using form.Using User Interface to add data we send request to application server to add data to database.Application server forward the request which come from user interface i.e. client to the database server.After storing data to database, database server sends success response to the application server.If data is not stored in database, then database server send error response to the application server.Then application server sends success or error response to the user interface i.e. client.When we fetch the data from database, we send request to the application server to fetch data.Application server forward the data fetch request to the database server not process the request successfully then database server sends error response to the application server.Then application server not process the request successfully then database server sends error response to the application server.Then application server sends the success / error response to the application server.Then application server sends the success / error response to the user interface that is client.

Sr. No.	Paper	Methodology	Feature Set	Advantages	Limitations
1.	Most Trending	Automated Data	Huge amount of	Using Twitter	We have to buy
	Topics with Pre-	Extraction	Data in the form	API, we can	Twitter API.
	learned	Using Twitter	of topics,	easily fetch data	
	Knowledge in	API	contents,	with secure	
	Twitter		hashtags, cities,	format.	
			etc.		
2.	Most Trending	Fetching Twitter	We can fetch	Data is secure.	Limit the
	Topics with Pre-	API data from	large amount of	No need to	exposure of data
	learned	database	secure data from	add/provide	to avoid data
	Knowledge in		database.	extra security.	hacking.
	Twitter				

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 6, Issue 12, December 2018

VI. PSEUDO CODE

- I. Step 1: Insert twitter data / tweets into database using twitter API.
- II. Step 2: Fetch heading, content, hashtags and cities of tweets from use of twitter API.
- III. Step 3: Store heading, content, hashtags and cities into database fetch from twitter API.
- IV. Step 4: Enter word which want to search in search box.
- V. Step 5: Enter search word as name of city, heading, content or hashtags.
- VI. Step 6: Word which want to search is checking into database with heading, content, hashtag or city.
- VII. Step 7: If search word match found with heading, content, hashtag or city thenrelated data will display.
- VIII. If (\$word == \$row['data'])
- IX. Then display the related data.
- X. Else
- XI. Data will not display.

VII. SIMULATION RESULTS

The aid of this system are as follows:

- I. It proposes to mine knowledge from the dataset itself, and then leverage it to promote the performance of topic modelling. We call such process learning twice from the data.
- II. By introducing the latent interests, it can handle the cross-community interests and multiple senses problems. With a background model, it can reduce the noise, and produce more coherent topics.
- III. Proposed model and state-of the- art baselines datasets are compared by the complete evaluation.

Screenshot 1: The input page for entering the details such as city name, heading of tweet, content of tweet and the hashtags, as shown in following screenshot:

M NEV 🕫 cPar 🧬 500 🕫 cPar 👌 term 💣 Web 🖞] Liux, 🕼 cPar 🖉 cPar 🖉 inde. 🧬 logir μμλ enig μλλ enig μλ enig μλλ enig μλ enig μ	mg Ľ∣×	+		-	٥	×
← → C () Not secure enigmawisdomun/twitter/add_tweets.php					🖲 du) ÷
	Add Tweet						
	Enter City Name						
	Enter Heading						
	Enter Content						
	lenter Harbbar						
	Linci Hashrays						
	Add Tweet						
		Activat Go to Set	ē Win tings to	dow activ	5 ate Win	dows.	
# O # e <u>m</u> m <u>s</u> z x x	<u>E</u> • = • • 6 • • <u>E</u> <u>8</u>	ŝ	£ ^	i⇒ <i>12</i>	Ę()) 60	И РМ	₽

Figure 4: Form to fill information

Screenshot 2: The screenshots show how it looks after entering the details of tweet such as city name, heading of tweet, tweet information and hashtags:

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: <u>www.ijircce.com</u>

Vol. 6, Issue 12, December 2018

M NEW & cPan & 500 & cPan & tem: & Web &] Libr: & CPar: & CPar: & inde & logir A& enis A& enis A& enis A& enis A& enis A&	nig 🗋 1 x	+			n	×
← → C A Not secure enigmawisdom.in/twitter/add_tweets.php			☆	Ψ.	🕑 bw	0	1
	Add Tweet						
	Banglore						
	Information lechnology Companies Faces Problem						
	Information Technology companies face problem due to some technical critical issues						
	ೆ						
	#1 #Information Technology #Samplore						
	Add Tweet						
		Activati Go to Set	e Win ings to	clow: activa	; te Wind	lows.	
II O H 🔒 💼 🖨 💽 🗷 🛪 🛛	Z 📾 🖛 🏟 🙆 🔹 👌 🖹 🧾	ş	* ^ *	t di	c(0) 7:0	3 PM	Ş

Figure 5: Form after entering information

Screenshot 3: The screenshot shows search criteria based on city name or hashtags. When we enter a city name or hashtag we get the latest tweets based on city name or hashtag:

M NEV 🕫 cPar 🕫 500 🕫 cPar 🗋 tem 🕫 Wet 🗋 Libri 🕫 cPar 🕫 cPar 🗗 inde 🗗 logi 🛝 enig 🍌 enig 🍌 enig 🍌 enig 🍌 enig	+		Ć)	×
← → C O Not secure enigmawiodomain/twitter/	\$	•	bw .	0	8
Mumbai					
Sachin Tendulkar Verified account @sachin_rt 3h3 hours ago This day, every year, brings beek so many memories of the day I fat represented India. It was an honour to play for the country and be able to represent India for 24 years #TBT #ThrowbeckThursday					
Mumbai: Ola, Uber drivers to resume strike from November 17 - Times of India Mumba: Commuters who are dependent on cab appregator services are likely to tace hardship as the drivers and owners of the vehicles associated with U. Pextra					
Activate	Windo	DWS			
	ngs to ac	nvate\ <i>M</i> : 40)	7:35 PN	vs.	ŀ

Figure 6: Output after search

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: <u>www.ijircce.com</u>

Vol. 6, Issue 12, December 2018

VII. CONCLUSION AND FUTURE WORK

CONCLUSION

This paper presents the simplest method to fetch the data from Twitter. An API will be used to get the data from Twitter and to store into the database. The paper presents the simplest method to extract the data from the database dependent on the location, topic of interest and # tags. This facilitates the removal of unnecessary data so users can view their interested tweets real quickly. Also the overhead on machine to run complicated algorithms is reduced by implementing simplest method. It overcomes the issue of existing system like topic modeling which is unable to extract the data in desired manner. On the other hand proposed system provides expected results as required.

• FUTURE WORK

- I. Automatic Location Based Search: The user location can be fetched directly using Google Location Tracking API. The Search will be carried out on the basis of current location of the user. This will eliminate the need for user to each time select the location and can improve the experience.
- II. Behavioural Search: The search can be added up with the ability to scan for user's behavior. This can be achieved by checking for user's login session or ip address and MAC address combination. The topics searched by the user are divided into the different categories like sports, entertainment, news or into different channels etc. and are stored into the database. The database maintains a separate table for login session and ip-MAC combination. Later whenever user goes for searching, system will show suggestions on the basis of last search. By implementing behavioural search, user's experience can be further improved.

REFERENCES

[1] Z. Chen, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh, "Discovering coherent topics using general knowledge," Proc. CIKM, New York, NY, USA, 2013, pp. 209218. [Online].

Available: http://doi.acm.org/10.1145/2505515.2505519

[2] D. M. Blei and J. D. Lafferty, "Dynamic topic models," in Proc. ICML, New York, NY, USA, 2006, pp. 113120. [Online].

Available: http://doi.acm.org/10.1145/1143844.1143859

[3] Y. Chen, H. Amiri, Z. Li, and T.-S. Chua, ``Emerging topic detection for organizations frommicroblogs," in Proc. 36th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2013, pp.4352. [Online].

Available: http://doi.acm.org/10.1145/2484028.2484057

H. Kim, Y. Sun, J. Hockenmaier, and J. Han, "Etm: Entity topic models for mining documents associated with entities," in Proc. ICDM, 2012, pp. 349358. [Online]. Available: http://dblp.unitrier.de/db/conf/icdm/icdm2012.html#KimSHH12

[5] D. Andrzejewski, X. Zhu, and M. Craven, "Incorporating domain knowledge into topic modeling via dirichlet forest priors," in Proc. ICML, New York, NY, USA, 2009, pp. 2532. [Online].

Available: http://doi.acm.org/10.1145/1553374.1553378

[6] G. Miao et al., ``Latent association analysis of document pairs," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 14151423.

[7] X. Lu, Z. Yu, B. Guo, and X. Zhou, "Predicting the content dissemination trendsby repost behavior modeling in mobile social networks," J. Netw. Comput. Appl., vol. 42, pp. 197207, Jun. 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1084804514000599
[8] G. A. Miller, "WordNet: A lexical database for English," Commun. ACM, vol.38, no. 11, pp. 3941, 1995. [Online].

Available: http://doi.acm.org/10.1145/219717.219748

[9] D. Mimno, H. M. Wallach, E. Talley, M. Leenders, and A. McCallum, ``Optimizing semantic coherence in topic models," Proc. Conf. Empirical Methods Natural Lang. Process. Stroudsburg, PA, USA, 2011, pp. 262272. [Online].

Available: http://dl.acm.org/citation.cfm?id=2145432.2145462

[10] D. Ramage, D. Hal, R. Nallapati, and C. D. Manning, ``Labeled Ida: A supervised topic model for credit attribution in multi-labeled corpora," in Proc. Conf. Empirical Methods Natural Lang. Process., Stroudsburg, PA, USA, 2009, pp. 248256.[Online]. Available: http://dl.gom.org/gitetion.ofm?id=1600510_1600542