

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Comparative Study on Fingerprint Recognition System

Priya Garg¹, Naveen Kumari²

PG Student, Dept. of Computer Science, PURCITM, Mohali, India¹

Assistant Professor, Dept. of Computer Science, PURCITM, Mohali, India²

ABSTRACT: Biometric is a technique or a technology, which can be used to identify a person based on behavioural and physiological characteristics. Different biometric techniques are Fingerprint Recognition; Palm Recognition; Face Recognition; Iris; voice Signature; User-Ids and Passwords. But fingerprint is one of the most popular biometric techniques and identification of fingerprint recognition has been done by considering its unique characteristics like: core point, delta points, and bifurcation points. The purpose of this paper is to perform comparative study on various fingerprint recognition methods such as correlation based, minutiae based and other local, global methods.

KEYWORDS: Fingerprint Recognition, Authentication, Biometric Features, Enhancement and Segmentation.

I. INTRODUCTION

Biometrics or biometric based recognition is the science of verifying, or identifying the identity of a person based on behavioural and/or physiological characteristics [1]. According to the A.K. Jain, the term biometrics is defined as "Automated methods of authenticating a person based on behavioural or physiological characteristics" [2].

Basically, biometric features are Anatomy based such as fingerprints, palm, face, iris etc. and behaviour based such as voice, heart-beat etc. Most of the biometric identifiers is combination of behavioural and physiological characteristics of a person. For example, fingerprints may be physiological in nature but the usage of the input device (how user places a finger over the fingerprint scanner etc.) depends on the person's behaviour[3]. And fingerprint is the most popular technique for fingerprint recognition system.

Various approaches have used by the researchers over the years for fingerprint recognition by using minutiae points, ridges, valleys etc [4]. Such as correlation based, counting number of minutiae points, phase based, DSP based and based on Euclidian distance between core and minutiae points.

Figure 1 : Types of Fingerprint [5]

There are mainly 3 classes of fingerprints: Loop, Whorl and Arch i.e. shown in figure 1. 60-65% of the population has loop type fingerprint, 30-35% of the population have whorl type fingerprint but only 5% of the population have Arch type fingerprints [6].

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

II. PREVIOUS WORK

Different techniques have been used to recognize the Fingerprints. These techniques are broadly classified as:

Minutiae Based: This approach is most widely used by Human experts and machines. According to the study, two individuals can not have more than seven common minutiae points. Minutiae points are of 2 types: Ridge Ending and Ridge Bifurcation Points. Ridge Ending are the points where the ridge curve terminates and Ridge Bifurcation are the points where ridge curve splits from a single path to double path called as Y- Junction Shown in figure [4].

Fig.2 Minutiae Points: (a) Ridge Bifurcation (b) Ridge Ending

Pattern Based Approach: The overall fingerprint characteristics have been considered. For this approach, size must be larger than Minutiae based approach as in this authentication system fingerprint image consider itself as a template.

Neural Network Based Approach: This approach gives good results as neural network can easily recognize poor quality images as well as avoids inheritance problem.

Gabor Based Technique: Gabor filter has been used to enhance and remove noise from an image whenever quality of image is not so good.

Wavelet- Based Features: Fast Fourier Transform (FFT) has been used to recognize the fingerprint with the 90% precision rate.

Euclidian Distance Technique: The Euclidian distance has been determined between core point and their nearest neighbour bifurcation points.

Novel Approach: The Novel approach has been used to determine the core points of fingerprints that have no centre point i.e. Arch Type Fingerprint.

Digital Signal Processor: DSP is the nucleus of this embedded recognition system. The System can run independently without personal computer. This software is developed on the basis of Visual DSP++ project management tool using C language.

III. LITERATURE REVIEW

Fingerprint identification is based on the unique and invariant features of fingerprints like ridges and valleys. Ridges are the combination of minutiae points and core point. These Minutiae points consists of minutiae endings and minutiae bifurcation points. Minutiae points have been detected by using minutiae detection algorithm by Virgina [7] and Kuntal [8]. Core point has been detected by using singular point detection method by Ali[9]. Hemlata[10] and Wen[11] proposed a technique in which recognition has been done by counting number of minutiae points using minutiae matching algorithm.

Ala Batli [12] proposed the system that determines the Euclidian distance between core point and neighbour bifurcation points and the results has been evaluated using back propagation neural network. Avinash[13] and Adrian[14] followed Winner Takes All Technique and Neural Network for classification.

Guoqiang[15] and Navrit[16] gives Novel Approach for centre point detection by using a set of isosceles triangle. Wang Yongxu[17] concentrates on two approaches i.e. Principal Component Analysis (PCA) for extracting Statistical features and Novel Approach for dividing the Region Of Interest (ROI).

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Wahab[18] proposed a methodology that defines two stages for matching the fingerprints i.e. correlation using local features and correlation using global features. Asif Iqbal[19] proposed a technique for filtering out false minutiae points and preserves true ones. R. Priya[20] employed these techniques for Secure Internet Banking.

Another approaches are Digital Signal processor proposed by Maddu[21] and combination of Fast Fourier Transformation(FFT) and Gabor filters proposed by Gualberto[22] .Koichi[23] proposed Phase-based matching approach based on 2D Discrete Fourier Transformation. Kaisheng[24] employed Automatic Fingerprint Recognition System (AFRS) technique for fingerprint recognition.

IV. COMPARATIVE STUDY

Sr. No.	Paper Name	Enhancement	Segmentation	Feature Extraction	Classification
1	An Embedded	Hong's Algorithm	Otsu	Determine Euclidian	Neural Network
	Algorithm of	and Histogram	Segmentation	distance between core	
	Fingerprint	Equalization	Algorithm	and minutiae points	
	Recognition System				
	Using Novel				
	Approach Based on				
	Euclidian Distance				
	[25]				
	Fingerprint	Grey-Level	Adaptive	Edges are detected by	Back-
	Identification &	Enhancement	thresholding	using "Sobel Edge	propagation
2.	Recognition Using		methods	Detection Method"	Neural Network
	Back-Propagation			which are existing inside	
	Neural Network [14]			the fingerprint images.	
	Fingerprint	Hong's Gabor Filter		Detect Core point using	Neural Network
	Verification Based on			Complex Filters	
3.	Back-Propagation				
	Neural Network [12]				
	Strategy to Extract	Using function		Extract ROI using two	
	Reliable Minutia	histeq()		Morphological	
4.	Points For			operations called OPEN	
	Fingerprint			and CLOSE	
	Recognition [19]				
	A Neural Network				
	Based Approach for				
5.	fingerprint				
	recognition System				
	[13]				
	Fingerprint			Determine Core Point by	
	Recognition By			using Average Squared	
6.	Euclidian Distance			Directional Field	
	[26]			(ASDF) and Bifurcation	
				Point using 3x3 pixel	
				mask & 52 possible	
				patterns	
	Fingerprint	Combination of		Minutiae Detection	

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

	Recognition [22]	Fourier		Algorithm is used by	
7.		Transformation and		estimating the number of	
		Gabor Filtering		pixels that cross the	
				PixelCenter(PC)	
	A Novel Approach				
8.	used for measuring				
	fingerprint				
	orientation of arch				
	fingerprint [15]				
	Study on the	The common	The local	Extract Local and Global	
9.	Embedded	method of	Variance	Features. Global Feature	
	Fingerprint Image	enhancement is to	segmentation	reflect overall shaper of	
	Recognition System	calculate the every	method is	fingerprint & Local	
	[24]	part of image's	through using	feature can reflect	
		local feature, like	fingerprint	minutiae of fingerprint	
		directional and	image's local		
		rates, then use	gray scale		
		texture filter to	variance		
		filter every part			
	A Fingerprint			The Poincare Index	
	Recognition			method is used to detect	
10.	Algorithm using			the core point of an	
	Phase-Based Image			image	
	Matching for Low-				
	Quality Fingerprints				
	[23]				
	DSP based	Gabor Filter	Image is	Crossing Number(CN) is	
11.	Embedded		segmented for	used for extracting the	
	Fingerprint		the purpose of	minutiae points	
	Recognition System		separating the		
	[21]		foreground and		
			background		
			regions		
12.	Minutiae Detection	Directional Filters	"Otsu Method"	Template is formed by	
	Algorithm for		to obtain best	making a list of minutiae	
	Fingerprint		performance	and number of ridges	
	Recognition [7]		threshold	between each pair of	
				minutiae.	
	A Fingerprint			Use Poincare Index to	
13.	Recognition			detect Singular point.	
	Algorithm Based on				
	Principal Component				
	Analysis [17]				

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

V. CONCLUSION

Biometric system is used for security purpose and Fingerprint Recognition is one of the most simplest and successful biometric method for authentication. Various researchers gave different conclusion based on their research. Results of minutiae matching technique calculated by counting number of minutiae points has not been satisfactory as two different persons can have same number of minutiae points. Euclidian distance approach gives good result but the results are still not satisfactory for poor quality image.

An Embedded algorithm of fingerprint recognition using novel approach based on Euclidian distance gives satisfactory result [25]. This network was trained by neural network.

There are various approaches described in this paper. But a lot of work is still required to solve the problems regarding fingerprint recognition. Most common problem is the average quality of an image (like Age Group, Skin Condition, Ridge Distortion and Cut in Ridges and Spikes) which creates difficulty in recognizing the image. Different types of Enhancement and Segmentation techniques can be apply for recognizing the fingerprint.

The simulation studies involve the deterministic small network topology with 5 nodes as shown in Fig.1. The proposed energy efficient algorithm is implemented with MATLAB. We transmitted same size of data packets through source node 1 to destination node 5. Proposed algorithm is compared between two metrics Total Transmission Energy and Maximum Number of Hops on the basis of total number of packets transmitted, network lifetime and energy consumed by each node. We considered the simulation time as a network lifetime and network lifetime is a time when no route is available to transmit the packet. Simulation time is calculated through the CPUTIME function of MATLAB. Our results shows that the metric total transmission energy performs better than the maximum number of hops in terms of network lifetime, energy consumption and total number of packets transmitted through the network.

The network showed in Fig. 1 is able to transmit 22 packets if total transmission energy metric is used and 17 packets if used maximum number of hops metric. And the network lifetime is also more for total transmission energy. It clearly shows in Fig. 2 that the metric total transmission energy consumes less energy than maximum number of hops. As the network is MANET means nodes are mobile and they change their locations. After nodes have changed their location the new topology is shown in Fig. 3 and energy consumption of each node is shown in Fig. 4. Our results shows that the metric total transmission energy performs better than the maximum number of hops in terms of network lifetime, energy consumption and total number of packets transmitted through the network.

REFERENCES

- [1]
- H. L. and R. G. editors J. Bery, "Advances in Fingerprint Technology." pp. 1–38, 1994. J. L. wayman and A. K. J. D. Maio, D. Maltoni, R. Cappelli, "Fingerprint Verification Competition," in *In Proceedings of International* [2] Conference on Biometric Authentication, 2014, pp. 1-7.
- C. L. W. and M. P. P. J. Phillips, A. Martin, "An Introduction to Evaluating Biometric Systems," IEEE Comput. Mag., vol. 33, no. 2, pp. [3] 56-63.2000.
- A. S. Paraste, "A BRIEF REVIEW PAPER ON FINGER PRINT IDENTIFICATION METHOD," Int. J. Electr. Electron. Res., vol. 2, no. [4] 2, pp. 73–77, 2014.
- "Types [5] of Fingerprint." [Online]. Available[.] http://www.google.co.in/imgres?imgurl=http://www.mos.org/discoverycenter/system/files/aotm/fingerprint%2Bpatterns%2Bsm.jpg&imgresingerprint%2Bsm.jpg&imgresinfurl=http://legacy.mos.org/discoverycenter/aotm/2011/06&h=316&w=300&tbnid=eE7a0Ast3fF1QM:&zoom=1&docid=vcyEfcznIy7XeM &ei=kLCHVcsbise4BMW6rGg&tbm=isch&ved=0CB0QMygBMAE&biw=1366&bih=631. [Accessed: 23-Jun-1BC].
- [6] "Classification of Fingerprints," 2015. [Online]. Available: http://shs2.westport.k12.ct.us/forensics/04-fingerprints/classification.htm. [Accessed: 25-Jul-2015].
- [7] V. Espinosa-Dur, "Minutiae detection algorithm for fingerprint recognition," Aerosp. Electron. Syst. Mag. IEEE, vol. 3, no. Mar 2002, pp. 7-10, 2002.
- S. Bhattacharya and K. Barua, "Fingerprint Identification," Glob. J. Comput. Sci. Technol., vol. 11, no. 6, 2011. [8]
- A. I. Awad and K. Baba, "Singular Point Detection for Efficient Fingerprint Classification Graduate School of Information Science and [9] Electrical Engineering Kyushu University Library," *Int. J. New Comput. Archit. Their Appl.*, vol. 2, no. 1, pp. 1–7, 2012. H. Patel and V. Sharma, "Fingerprint Recognition by Minutiae Matching," *Int. J. Eng. Trends Technol.*, vol. 4, no. May, pp. 2136–2140,
- [10] 2013
- W. Wen, Z. Qi, Z. Li, J. Zhang, Y. Gong, and P. Cao, "A Robust and Efficient Minutia-based Fingerprint Matching Algorithm," in Asian [11] Conference on Pattern Recognition(IAPR), 2013, pp. 201-205.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

- [12] A. Balti, M. Sayadi, and F. Fnaiech, "Fingerprint Verification Based on Back Propagation Neural Network," J. Control Eng. Appl. Informatics, vol. 15, no. 3, pp. 53–60, 2013.
- [13] A. K. Jhal, S. Narasimhaml, S. S. Krishna, and V. P. M. Pillah, "A Neural Network Based approach for Fingerprint recognition system Learning Mechanism W.(i, j)," *Ultra Mod. Telecommun. Control Syst. Work. Int. Congr.*, pp. 808–812, 2010.
- [14] A. Lim and H. Jinl, "Fingerprint Identification and Recognition Using Backpropagation Neural Network," in *Research and Development*, 2002. SCOReD 2002. Student Conference on, 2002, pp. 98–101.
- [15] C. B. and B. Y. Guoquiang Li, "A novel approach used for measuring fingerprint orientation of arch fingerprint," in *Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014 37th International Convention on*, 2014, pp. 1309–1314.
- [16] N. K. Johal and P. A. Kamra, "A Novel Method for Fingerprint Core Point Detection," Int. J. Sci. Eng. Res., vol. 2, no. 4, pp. 2–7, 2011.
- [17] D. Y. & li Y. Wang Yongxu, Ao Xinyu, "A Fingerprint Recognition Algorithm Based on Principal Component Analysis," in TENCON 2006 - 2006 IEEE Region 10 Conference, 2006, vol. 00, pp. 1–4.
- [18] E. C. T. A.Wahab, S.H..Chin, "Novel_Approach.pdf." pp. 160–166, 1997.
- [19] M. A. W. Asif Iqbal Khan, "Strategy to Extract Reliable Minutia Points for Fingerprint Recognition," *Adv. Comput. Conf. (IACC), 2014 IEEE Int.*, no. 21–22 Feb, pp. 1071–1075, 2014.
- [20] R. Priya, "A Novel algorithm for Secure Internet Banking with finger print recognition," in *International Conference on Embedded System*, 2014, no. Ices, pp. 104–109.
- [21] P. A. K. Maddu Kamaraju, "DSP based embedded Fingerprint Recognition System," in *Hybrid Intelligent Systems (HIS), 2013 13th International Conference on*, 2013, pp. 6–11.
- [22] H. Gualberto Aguilar, Gabriel Sanchez, Karina To scano, Moises Salinas, Mariko Nakano, "Fingerprint Recognition," in *Second International Conference on Internet Monitoring and Protection*, 2007, no. Icimp, pp. 1–6.
- [23] K. Ito, A. Morita, T. Aoki, T. Higuchi, H. Nakajima, and K. Kobayashi, "A Fingerprint Recognition Algorithm Using Phase-Based Image Matching for Low-Quality Fingerprints," *Image Process. 2005. ICIP 2005. IEEE Int. Conf.*, vol. 2, pp. 0–3, 2005.
- [24] J. S. and mingxing G. and W. M. Kaisheng Zhang, "Study on the Embedded Fingerprint Image Recognition System," in *Information Science and Management Engineering (ISME), 2010 International Conference of (Volume:2),* 2010, pp. 169–172.
- [25] N. K. Priya Garg, "An Embedded Algorithm of Fingerprint Recognition Using Novel Approach Based on Euclidian Distance," Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. 8, pp. 262–266, 2015.
- [26] A. P. Chomtip Pornpanomchai, "Fingerprint Recognition By Euclidian Distance," in *Computer and Network Technology (ICCNT), 2010 Second International Conference on*, 2010, pp. 437–441.

BIOGRAPHY

Priya Garg is a student of Computer Science Department, Punjabi University of Regional Centre Information Technology and Management (PURCITM), Mohali. He has done her M.Tech from PURCITM in September 2015. Her research interests are Biometrics in Digital Image Processing.