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 ABSTRACT:  Programming paradigm allows for massive scalability across hundreds or thousands of servers which 
leads to the collection of enormous volume of data. Processing this voluminous data requires an advanced techniques 
like Map Reduce for efficient processing of data. MapReduce refers to two separate and distinct tasks. The first is the 
map job, which takes a set of data and converts it into another set of data. The reduce job takes the output from a map 
as input and combines those data tuples into a smaller set of tuples. As new data and updates are constantly arriving, 
the results of data mining applications become stale and obsolete over time. This paper proposes incremental-
MapReduce a novel incremental processing extension to MapReduce, the most widely used framework for mining big 
data. It utilizes previously saved states to avoid the expense and time required for reprocessing the same set of data.We 
analysis Financial accounting data is used for analyzing the proposed approach and the experimental outcome shows 
the effectiveness of the proposed technique when compared to the existing system with simple MapReduce method.    
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I.INTRODUCTION

 
Big data is constantly evolving. As new data and updates are being collected, the input data of a big data mining 
algorithm will gradually change, and the computed results will become stale and obsolete over time. In many situations, 
it is desirable to periodically refresh the mining computation in order to keep the mining results up-to-date. For 
example, the PageRank algorithm computes ranking scores of web pages based on the web graph structure for 
supporting web search. However, the web graph structure is constantly evolving; Web pages and hyper-link are created, 
deleted, and updated. As the underlying web graph evolves, the PageRank ranking results gradually become stale, 
potentially lowering the quality of web search. Therefore, it is desirable to refresh the PageRank computation regularly. 
  Incremental processing is a promising approach to refreshing mining results. Given the size of the input big data, it is 
often very expensive to return the entire computation from scratch. Incremental processing exploits the fact that the 
input data of two subsequent computations are similar. Only very small fraction of input data has changed. The idea is 
to save the states in previous computation reuse the states in next computation and perform re-computation for states 
that are affected by changed input data. 
    On the other hand, Incoop extends MapReduce to support incremental processing. However, it has two main 
limitations. First, Incoop supports only task-level incremental processing. That is, it saves and reuses states at the 
granularity of individual Map and Reduce tasks.Each task typically processes a large number of key-value pairs (kv-
pairs). If Incoop detects any data changes in the input of a task, it will return the entire task. While this approach easily 
leverages existing MapReduce features for state savings, it may incur a large amount of redundant computation if only 
a small fraction of kv-pairs have changed in a task. Second, Incoop supports only one step computation, while 
important mining algorithms, such as PageRank, require iterative computation .Incoop would treat each iteration as a 
separate MapReduce job. However, a small of input data changes may gradually propagate to affect a large portion of 
intermediate states after a number of iterations, resulting in expensive global re-computation afterwards.     
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II.LITERATURE SURVEY 
 
MapReduce: Simplified Data Processing on Large Clusters 
 
J. Dean and S. Ghemawat [1] described that  MapReduce is a programming model and an associated implementation 
for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a 
set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same 
intermediate key. Many real world tasks are expressible in this model, as shown in the paper. Programs written in this 
functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time 
system takes care of the details of partitioning the input data, scheduling the program's execution across a set of 
machines, handling machine failures, and managing the required inter-machine communication. This allows 
programmers without any experience with parallel and distributed systems to easily utilize the resources of a large 
distributed system. 
 
Incoop : MapReduce for incremental computations  
 
Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, Rafael Pasquini [11] described the 
architecture, implementation, and evaluation of a generic MapReduce framework, named Incoop, for incremental 
computations. Incoop detects changes to the input and enables the automatic up-date of the outputs by employing an 
efficient,  fine-grained result re-use mechanism. To achieve efficiency without sacrificing transparency, we adopt 
recent advantages in the area of programming languages to identify systematically the short-comings of task-level 
memorization approaches, and address them using several novel techniques such as a storage system to store the input 
of consecutive runs, a contraction phase that make efficient, and a scheduling algorithm for Hadoop that is aware of the 
location of previously computed results. 
  
Pregel: A System for Large-Scale Graph Processing 
 
G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski [4] proposed Pregel,This 
computations consist of a sequence of iterations, called supersteps. During a superstep the framework invokes a user 
defined function for each vertex, conceptually in parallel. The function specifies behavior at a single vertex V and a 
single superstep S. It can read messages sent to V in superstep S � 1, send messages to other vertices that will be 
received at superstep S + 1, and modify the state of V and its outgoing edges. Messages are typically sent along 
outgoing edges, but a message may be sent to any vertex whose identifier is known. The vertex-centric approach is 
reminiscent of Map Reduce in that users focus on a local action, processing each item independently, and the system 
composes these actions to lift computations.
 
Piccolo: Building Fast, Distributed Programs with Partitioned Tables 
 
R. Power and J. Li [3] proposed  Piccolo, which is a new data-centric programming model for writing parallel in-
memory applications in data centers. Unlike existing data-flow models, Piccolo allows computation running on 
different machines to share distributed, mutable state via a key-value table interface. Piccolo enables efficient 
application implementations. In particular, applications can specify locality policies to exploit the locality of shared 
state access and Piccolo’s run-time automatically resolves write-write conflicts using user-defined accumulation 
functions. Using Piccolo, we have implemented applications for several problem domains, including the PageRank 
algorithm, k-means clustering and a distributed crawler. Experiments using 100 Amazon EC2 instances and a 12 
machine cluster show Piccolo to be faster than existing data flow models for many problems, while providing similar 
fault-tolerance guarantees and a convenient programming interface. 
 
Twister: A Runtime for Iterative MapReduce 
 
J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox [9]  Proposed  Twister, which is an 
enhanced MapReduce runtime with an extended programming model that supports iterative MapReduce computations 
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efficiently. It uses a publish/subscribe messaging infrastructure for communication and data transfers and supports long 
running map/reduce tasks which can be used in “configure once and use many times” approach. In addition it provides 
programming extensions to MapReduce with “broadcast” and “scatter” type data transfers. These improvements allow 
Twister to support iterative MapReduce computations highly efficiently compared to other MapReduce runtimes. 
 
HaLoop: Efficient Iterative Data Processing on Large Clusters 
 
Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst [8] designed HaLoop, that is used  to efficiently handle the above 
types of applications. HaLoop extends MapReduce and is based on two simple intuitions. First, a MapReduce cluster 
can cache the invariant data in the first iteration,and then reuse them in later iterations. Second, a MapReduce cluster 
can cache reducer outputs, which makes checking for a fixpoint more efficient, without an extra MapReduce job. 
 
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 
 
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica [2] 
proposed an abstraction called resilient distributed datasets (RDDs) that enables efficient data reuse in a broad range of 
applications. RDDs are fault-tolerant, parallel data structures that let users explicitly persist intermediate results in 
memory, control their partitioning to optimize data placement, and manipulate them using a rich set of operators. RDDs 
provide an interface based on coarse-grained transformations (e.g., map, filter and join) that apply the same operation to 
many data items. This allows them to efficiently provide fault tolerance by logging the transformations used to build a 
dataset (its lineage) rather than the actual data.1 If a partition of an RDD is lost, the RDD has enough information about 
how it was derived from other RDDs to recomputed just that partition. Thus, lost data can be recovered, often quite 
quickly, without requiring costly replication. 
 
REX: Recursive, DeltaBased DataCentric Computation 
S. R. Mihaylov, Z. G. Ives, and S. Guha[5] Developed the REX system, which includes: (1) support for high-level 
programming using declarative SQL, (2) the ability to do pipelined, ad hoc queries as in DBMSs, (3) the failover 
capabilities and easy integration of user-defined code from cloud platforms, and (4) efficient support for incremental 
iterative computation with arbitrary termination conditions and explicit creation of custom delta operations and 
handlers. REX runs efficiently on clusters. Its generalized treatment of streams of incremental updates is, to our 
knowledge, unique, and as we show experimentally, extremely beneficial. REX supports extended SQL with user-
defined Java code, and performs cost-based optimization. We take the further step of allowing the programmer to 
directly use compiled code for Hadoop in our environment: while adding some performance overhead versus a native 
approach, it provides an easy transition. 
 

III.ARCHITECTURE DIAGRAM  
 

The architecture diagram shows that there are two logins in our project, a user and an admin. The user is a normal bank 
user who does his transactions through online. The users should first register with a username and password. Then the 
users can create a bank account based on their needs such as a saving account or a current account. The users can also 
perform various transactions in their account such as deposit and withdrawal. Next is the admin login which plays a 
major role. The admin may be a bank employee who monitors the various transactions taking place in a bank .The 
admin takes care of uploading the data to the cloud, the data uploaded is encrypted using AES algorithm and a MD5 
hashing algorithm is used to check the integrity of the data. In our project we compare the existing map reduce and the 
proposed incremental map reduce concepts. We analyze the time taken to retrieve the same data using both the 
concepts. The result shows that incremental map reduce takes a lesser time than the existing map reduce technique.    
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Architecture diagram 

 
IV.AUTHENTICATION AND AUTHORIZATION 

 
In this module the user have to register first, then only he/she has to access the data base in online bank application. 
After registration the User can login to the site. The authorization and authentication process facilitates the system to 
protect itself and besides it protects the whole mechanism from unauthorized usage. The Registration involves in 
getting the details of the users who wants to use this application.  Admin can login to the site to manage over all 
process. 

 
V.MANAGING BANK ACCOUNTS 

 
This  provides two modules for managing a bank account. One is intended to be used by the bank, and the other by the 
customer. The approach is to implement a general-purpose parameterized function providing all the needed operations, 
then apply it twice to the correct parameters, constraining it by the signature corresponding to its final user: the bank or 
the customer. This set of functions provide the minimal operations on an account. The creation operation takes as 
arguments the initial balance and the maximal overdraft allowed. Excessive withdrawals may raise the Bad 
Operation exception. We keep unspecified for now the types of the log keys (type tkey) and of the associated data 
(type tinfo), as well as the data structure for storing logs (type t). We assume that new information added with 
the add function are kept in sequence. 
 

VI.UPLOAD BIG DATA 
 

Analyzing transactional data is at the core of the data at a financial institution’s disposal. Transaction data can uncover 
powerful insights into customer needs, preferences and behaviors. However, transaction data represents only one type 
of insight that financial institutions possess. Other types of insight that reside within an organization include both 
structured data (demographic profiles, product ownership, balances, etc.) and unstructured internal data (call center 
logs, channel interactions, correspondence, etc.).In addition to internal data sources, banks and credit unions can also 
take advantage of external data. Social media represents a largely untapped source of insight that financial 
organizations can use to develop a more holistic view of their customers. financial organizations and their executives to 
improve their customer experience levels to differentiate themselves and to stay ahead of competitors. This, in turn, 
will improve acquisition results, engagement and cross-sell effectiveness as well as customer loyalty and growth.  
 

VII.I2MAP REDUCE AND ANALYZING ITERATIVE COMPUTATIONS 
 

Cloud intelligence applications often perform iterative computations (e.g., Online Bank) on constantly changing data 
sets (e.g., Web graph). While previous studies extend MapReduce for efficient iterative computations, it is too 
expensive to perform an entirely new large-scale MapReduce iterative job to timely accommodate new changes to the 
underlying data sets. In this paper, we propose i2MapReduce to support incremental iterative computation. We observe 
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that in many cases, the changes impact only a very small fraction of the data sets, and the newly iteratively converged 
state is quite close to the previously converged state. i2MapReduce exploits this observation to save re-computation by 
starting from the previously converged state, and by performing incremental updates on the changing data. Our 
preliminary result is quite promising.  
 

VIII.SCREEN SHOTS 
 

The following are the screenshots of the implemented project which shows the various modules, users and how they are 
implemented. The following is the home page. 

 
Home Page 

 
This is the register page which the users can register themselves. 

 
Register Page 

 
After registering the users can login using their user name and password. 

 
Login Page 
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The following is the User page in which the user can perform various transactions. 

 
User page 

 
The following is the admin page where the admin uploads the data to the cloud. 

 
Admin uploading file 

 
The following screen shot shows the time taken using normal existing method. 

 
 

Time taken using map reduce 
 

The following screen shot shows the time taken using the proposed method. 

 
Time taken using incremental map reduce 
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IX.CONCLUSION 
 

We have described i2MapReduce, a MapReduce based framework for incremental big data processing. i2MapReduce 
combines a fine-grain incremental engine, a general-purpose iterative model, and a set of effective techniques for 
incremental iterative computation. Real-machine experiments show that i2MapReduce can significantly reduce the run 
time for refreshing big data mining results compared to re-computation on both plain and iterative MapReduce. 
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