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ABSTRACT: In the theory of probability one has to idealize a random experiment by making assuming hypothesis, so 
that relative frequency of an event happening can be directly mapped to probability of occurrence. In many real world 
scenarios the desired outcome of a random experiment is either known or certain measures have to be taken to meet the 
desired performances. For example in detection of radar signal the probability of false alarm and probability of 
detection is specified by the user and one implements a system to realize the specifications. However there are 
situations where it is not possible to draw inference as to possible outcomes of observations. 
  In this paper we consider atypical problem of making inference when there is no definite answers nevertheless 
the experiments lend themselves to logical analysis. A large body of such material in the theory of probability used for 
analyzing random experiments can be applied to derive an expression for the Probability of Inference. 
 
KEYWORDS: Binary Symmetric Channel, BSC; Radar Signals, Probability False Alarm; Probability of Detection, 
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I. INTRODUCTION 

 
The fundamental idea in any probabilistic model is the concept of making observations, which have certain 

measures of randomness and can't be predicted with certainty. Flipping a coin s, drawing a card, observing a signal in 
the presence of noise etc cannot be analyzed without making certain assumptions and assigning probability measures 
for the event that could occur. The term random experiment or random phenomenon does not lend themselves to be 
defined by a precise mathematical expression but can be used to predict what could be the result from what appears to 
be essentially identical process. For example repeated measurements on certain physical objects such as 
communication, radar, sonar signals generally leads to  a set of readings not all of which are exactly alike , regardless 
of the care we exercise in making the measurements correctly, random variations which sometimes called random 
errorscreep in wide beyond our precautions and make the observer decide on erroneous outcomes. This is applicable in 
wide variety of problems which describe experiments involving random variables in areas such as physical, biological 
and social sciences and other areas of human endeavors.[1][2][3]   Sample space for making inference, an expert which 
evolve if measurements one or more random variables has certain outcomes that other elementary results of the 
experiment, for example in the flipping of  the  pin head and tail are the possible outcomes , similarly in the throwing of 
a dice 1,2,3,4,5,6 are the possible outcomes. 

 
II. MATHEMATICAL MODEL 

For discrete sample spaces, any subset of the sample space is an event, that is, a probability can be defined for it. 
For instance, in throwing a die various events such as “the outcome is even,” “the outcome is greater than 3,” and “the 
outcome divides 3” can be considered. For a non discrete sample space, not every subset of Ω can be assigned a 
probability without sacrificing basic intuitive properties of probability. To overcome this difficulty, we define aσ-field 
 :on the sample space Ω as a collection of subsets of Ω such that the following conditions are satisfiedߚ
1. Ω∈  .ߚ
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2. If the subset (event) ܧ ∈ ௖ܧ then ߚ ∈  .௖denotes the complement of Eܧ where ߚ
3. If ܧ௜ ∈ ⋃for all i, then ߚ ௜ܧ ∈ ∞ߚ

௜ୀଵ . 
We define a probability measure P on ߚ as a set function assigning nonnegative values to all events E in ߚ 

such that the following conditions are satisfied: 
1. 0 ≤ P (E) ≤ 1 for all E∈  .ߚ
2. P (Ω) = 1. 
3. For disjoint events	,ܧଵ,ܧଶ,ܧଷ,  . . (i.e., events for which ܧ௜∩ ܧ௝= ɸ for all i≠ j , where ɸ is the null set), we have 
P(⋃ ∞௜ܧ

௜ୀଵ )=∑ ∞௜ܧ)݌
௜ୀଵ ).The triple (Ω, ߚ, P) is called a probability space. 

Some basic properties of the probability measure follow easily from the set theoretical properties of events 
together with the basic properties of probability measure. 
Some of the most important properties are. 
1. P (ܧ௖) = 1 − P (E). 
2. P (ɸ) = 0. 
3. P (ܧଵUܧଶ) = P (ܧଵ) + P (ܧଶ) − P (ܧଵ∩ܧଶ). 
4. If ܧଵ⊂ܧଶ then P (ܧଵ) ≤ P (ܧଶ). 
 
2.1. Conditional Probability 

Let us assume that the two events ܧଵ and ܧଶ are defined on the same probability space with corresponding 
probabilities P (ܧଵ) and P (ܧଶ).[4][5] Then, if an observer receives the information that the event ܧଶ has in fact 
occurred, the observer’s probability about event ܧଵ will not be P(ܧଵ) any more.[6] In fact, the information that the 
observer received changes the probabilities of various events, and new probabilities, called conditional probabilities, is 
defined. The conditional probability of the event ܧଵ given the event ܧଶ is defined by  

(ଶܧ|ଵܧ)ܲ = ൝
௣(ாభ∩ாమ)

௣(ாమ)

݁ݏ݅ݓݎℎ݁ݐ݋			,0
	 (ଶܧ)ܲ, ≠ 0(1)    

 
            If it happens that P (ܧଵ|ܧଶ) = P (ܧଵ) then knowledge of ܧଶ does not change the probability of occurrence ofܧଵ. 
In this case, the events ܧଵ and ܧଶ are said to be statistically independent. For statistically independent events,[7]P(ܧଵ ∩
(ଶܧ =  (ଶܧ)ܲ(ଵܧ)ܲ
 

2.2. Random Variables 

A (real) random variable is a mapping from the sample space Ω of the set of real numbers. A schematic 
diagram representing a random variable is given in Figure 1.  

Random variables are denoted by capital letters X, Y, etc.; individual values of the random variable X are X (ω). A 
random variable is discrete if the range of its values is either finite or countable infinite. This range is usually denoted 
by {ݔ௜}. 
The cumulative distribution function (CDF) of a random variable X is defined as 
߱)ܲ=(ݔ)௑ܨ  ∈ Ω:ܺ(߱) ≤ x)                                                                                          (2)                
This can be simply written as. 
 P(X ≤ x)                                                                                                            (3) =(ݔ)௑ܨ 

 
And has the following properties: 
 .1 ≥(ݔ)௑ܨ ≥ 0 .1
 .is nondecreasing(ݔ)௑ܨ .2
3. lim௫→ିஶ (ݔ)௑ܨ = 0	ܽ݊݀ 
lim௫→ାஶ (ݔ)௑ܨ = 1. 
ܺ)ܨis continuous from the right; i.e.݈݅݉ఌ↓଴(ݔ)௑ܨ .4 + (ߝ =  (ܺ)ܨ
5. P (a <X ≤ b) = ܨ௑(ܽ) −  (ܾ)௑ܨ
6. P(X = a) = ܨ௑(ܽ) −  .௑((a−)ܨ
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For discrete random variablesܨ௑(ݔ) is a stair-case function. A random variable is called continuous ifܨ௑(ݔ)) is a 
continuous function. A random variable is called mixed if it is neither discrete nor continuous. Examples of CDFs for 
discrete, continuous, and mixed random variables are shown in Figures 2, 3, and 4, respectively. 
The probability density function (PDF) of a random variable X is defined as the derivative of	ܨ௑(ݔ));  
 i.e., ௑݂(ݔ) = ௗ

ௗ௫
                                 (4)                                                                                                      (ݔ)௑ܨ

In case of discrete or mixed random variables, the PDF involves impulses. The basic properties of PDF are : 
1. ௑݂(ݔ) ≥ 0. 
2.∫ ௑݂(ݔ)݀ݔ = 1∞

ି∞  

3.∫ ௑݂(ݔ)݀ݔ = 	ܲ(ܽ < ܺ ≤ శ࢈.(ܾ

శࢇ  
4. in general, P(X ∈ A) =∫ ௫݂(ݔ)݀ݔ 
∫=(ݔ)௑ܨ.5 ௑݂(ݑ)	݀ݑ௫శ

ି∞ . 
 

 
Figure 2 CDF for discrete random variables 
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Figure 3 CDF for continuous random variables 

 
Figure 4 CDF for mixed random variables 
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For discrete random variables, it is more common to define the probability mass function (p.m.f), which is defined as 
௜݌where {௜݌} = ܲ(ܺ = ௜݌௜). Obviously for all iwe haveݔ ≥ 0	.and∑ ௜݌ = 1௜ . 
 

III. APPLICATIONS 

 

In this paper we choose two applications to apply our inference scheme which are: 

3-1 Gaussian Channel Capacity 

A discrete-time Gaussian channel with input power constraint is characterized by the input–output relation 
ܻ = ܺ + ܼ                                                                                                                                   (5)                                                  

Where Z is a zero-mean Gaussian random variable with variance ேܲ, and for n large enough, an input power constraint 
of the form: 
 ଵ

௡
∑ ௜ଶ௡ݔ
௜ୀଵ ≤ ܲ                                                                                                                             (6)                                                   

Applies to any input sequence of length n. For blocks of length n at the input, the output, and the noise, we have 
y = x + z  

If n is large, by the law of large numbers, we have 
ଵ
௡
∑ ௜ଶ௡ݖ
௜ୀଵ = ଵ

௡
∑ ௜ݕ) − ௜)ଶ௡ݔ
௜ୀଵ ≤ ேܲ                                                                                                         (7)                   

Or 
‖࢟ − ࢞‖ଶ	 ≤ ݊ ேܲ                                                                                                                       (8)      
                                       

This means that, with probability approaching one (as n increases), y will be located in an n-dimensional sphere (hyper 
sphere) of radiusඥ݊ ேܲand centered at x. On the other hand, due to the power constraint of Pon the input and the 
independence of the input and noise, the output power is the sum of the input power and the noise power, i.e. 
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 ଵ
௡
∑ ௜ଶ௡ݕ
௜ୀଵ ≤ ܲ + ேܲ                                                                                                                              (9)                                        

Or 
ଶ‖ݕ‖  ≤ ݊〈ܲ + ேܲ〉                                                                                                                           (10)       
                                     
This implies that the output sequences (again, asymptotically and with high probability) will be inside an n-dimensional 
hyper sphere of radius ඥ݊(ܲ + ேܲ)and centered at the origin. Figure 5 shows the sequences in the output space.  

 
The question now is: How many x sequences can we transmit over this channel such that the hyper spheres 
corresponding to these sequences do not overlap in the output space? Obviously if this condition is satisfied, then the 
input sequences can be decoded reliably. An equivalent question is: how many hyper spheres of radius ඥ݊ ேܲcan we 
pack in a hyper sphere of radiusඥ݊( ேܲ + ܲ)? The answer is roughly the ratio of the volumes of the two hyper spheres. 
If we denote the volume of an n-dimensional hyper sphere by ௡ܸ =  ௡isܭ ௡ܴ௡where R denotes the radius andܭ
independent of R, we see that the number of messages that can be reliably transmitted over this channel is equal to 

ܯ = ௄೙൫௡(௉ಿା௉)൯
೙
మ

௄೙(௡௉ಿ)
೙
మ

			= ቀ௉ಿା௉
௉ಿ

ቁ
೙
మ = ቀ1 + ௉

௉ಿ
ቁ
೙
మ                                                                                                 (11) 

Therefore, the capacity of a discrete-time additive white Gaussian noise channel with input power constraint P is given 
by 
ܥ  = ଵ

௡
logܯ = ଵ

௡
	 . ௡
ଶ

log ቀ1 + ௉
௉ಿ
ቁ = ଵ

ଶ
log ቀ1 + ௉

௉ಿ
ቁ                                                                         (12) 

When dealing with a continuous-time, band limited additive white Gaussian noise channel with noise power-spectral 
densityேబ

ଶ
 , input power constraint P, and bandwidth W, one can sample at the Nyquist rate and obtain a discrete-time 

channel. The power/sample will be Pand the noise power/sample will be 
 ேܲ = ∫ ேబ

ଶ
ା௪
ି௪ ݂݀ = ܹ ଴ܰ                                                                                                                   (13)                                                   

Substituting these results in the above Equation, we obtain 
ܥ  = ଵ

ଶ
log ቀ1 + ௉

ேబௐ
ቁbits/transmission                                                                                              (14)                         

If we multiply this result by the number of transmissions/sec, which is 2W, we obtain the channel capacity in bits/sec 
ܥ  = ܹ log ቀ1 + ௉

ேబௐ
ቁbits/sec                                                                                      (15)                                   

This is the celebrated Shannon’s formula for the capacity of an additive white Gaussian noise channels shown in figure, 
6 and 7. 

 
3.2 Radar Signal Detection 

As a simple example of calculation maximum probability of inference,[8]consider a radar system with 
bandwidth 1 MHz, a required probability of detection 95 percent,[9] [10]and an average interval of 3hr between false 
alarms. Then the energy will be 10^4 joules, and the probability of false allowance 10^-10. For probability of signal 
detection 95 percent the figure shows that S/N is 15.5 db[11][12]. 
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Figure 6 Error Probabilities versus SNR in Binary Symmetric Channel 

 
Figure7 Channel Capacity versus SNR in BSC 
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SNR=35 at the detector input. From the required value of signal energy we can work backward to find the transmitted 
power required. A similar calculation with the probability of detection 99 percent requires the signal to noise power to 
be increased to 50 (17 db)[13]. 
Figure 8 and 9 shows the probability of detection with different values of false alarm and the improvement factor using 
the probability of inference method. 
 

 
PD 

Pfa 
10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 

0.1 6.19 7.85 8.95 9.94 10.44 11.12 11.62 12.16 12.65 
0.3 8.25 9.50 10.44 11.10 11.75 12.37 12.81 13.25 13.65 
0.5 9.45 10.62 11.25 11.95 12.60 13.11 13.52 14.00 14.35 
0.7 10.50 11.50 12.31 12.75 13.31 13.87 14.20 14.59 14.95 
0.9 11.85 12.65 13.31 13.85 14.25 14.62 15.00 15.45 15.75 

0.95 12.40 13.12 13.65 14.25 14.64 15.10 15.45 15.75 16.12 
0.98 13.00 13.62 14.25 14.62 15.12 15.47 15.85 16.25 16.50 
0.99 13.37 14.05 14.50 15.00 15.38 15.75 16.12 16.47 16.75 

0.998 14.05 14.62 15.06 15.53 16.05 16.37 16.70 16.89 17.25 
0.999 14.25 14.88 15.25 15.85 16.13 16.50 16.85 17.12 17.44 

0.9995 14.50 15.06 15.55 15.99 16.35 16.70 16.98 17.35 17.55 
0.9999 14.94 15.44 16.12 16.50 16.87 17.12 17.35 17.62 17.87 

Table (1) Single Pulse SNR (dB) 
 

 
Figure 8.Probability of Detection Versus single Pulse SNR , for several Pfa 
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The probability of detection can be written as			݌ௗ = logଵ଴ 〈1 + ௣೏
௣೑
〉																																							(	16) 

 

 
Figure 9 Improved Factors Versus Number of Pulses. 

 
IV. CONCLUSIONS 

This paper deals with a scheme for computing probability of inference and applying this scheme in different 
applications in real life like, Binary symmetric channel and radar signals. This is done by use cumulative distribution 
function and probability mass function to calculate the inference and channel capacity of BSC and value of probability 
of false alarm in radar signals.  
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