X A
IJ I R cc E e-ISSN: 2320-9801 | p-ISSN: 2320-8798

OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 12, Issue 8, August 2024

NUMBER
INDIA

' INTERNATIONAL
STANDARD
I .\ lsmm Impact Factor: 8.625

L 9940572 462 ¥© 6381 907 438 ljircce@gmail.com @ www.ijircce.com

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

S T M Al | e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

'-‘, p\ d‘ International Journal of Innovative Research in Computer
\ and Communication Engineering (IJIRCCE)
IJ I RCCE (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Improving Software Fault Prediction with
Machine Learning and CNNs

Deshmukh Pankaja Rajebhau, Dr. Satish Narayan Gurjar
Research Scholar, Department of Computer Science, University of Technology, Jaipur, India

Department of Computer Science, University of Technology, Jaipur, India

ABSTRACT: It starts with the collection of historical software metrics and defect logs, followed by rigorous data
preprocessing including cleaning, normalization, and splitting into training and test sets. The chapter highlights the
importance of feature selection through correlation matrices and distance methods to enhance model accuracy. It
compares various machine learning algorithms, ultimately finding the AdaBoostClassifier to have the best performance
with an ROC AUC of 0.7511. By leveraging CNNSs' hierarchical learning capabilities, the chapter demonstrates a robust
framework for improving software fault prediction and addresses both the strengths and limitations of the approach.

Keywords: - Historical metrics, defect logs, preprocessing, feature selection, machine learning, AdaBoost, ROC AUC,
CNNs, fault prediction, model accuracy

LINTRODUCTION

An important part of software engineering is software defect prediction, which seeks to find and correct any potential
errors or defects in a software program before it is deployed. This effective strategy lowers development costs,
increases overall user satisfaction, and improves software quality. Software vulnerability prediction is the practice of
estimating the probability of errors in different sections of code using various methods and measurements [1]. This
makes it possible for development teams to focus testing efforts, use resources more wisely, and conduct focused code
reviews, all of which contribute to the creation of more reliable and long-lasting software. Among the important factors
of software error prediction are described below [2].

Metrics and attributes: Code complexity, code churn, code size, and historical defect data are a few metrics and
attributes taken from software code and used by error prediction models. Machine learning algorithms use these
measurements as input to detect trends and correlations.

Machine Learning Algorithms: Predictive models are developed using an array of machine learning techniques,
including neural networks, decision trees, and support vector machines. These methods allow for the analysis of
complex datasets and the identification of patterns that can predict future outcomes [3-4]. using historical data, these
models are able to estimate the probability of errors in specific code modules or components.

Data Processing: Data is cleaned and transformed using preprocessing procedures before being fed into machine
learning models. In order to maintain the quality and reliability of the model, this may include averaging the dataset,
dealing with missing values, and normalizing factors. Training and Testing: This ensures that the model can accurately
predict errors in newly written and untested code and helps test its production capabilities [5-6].

Validation and Evaluation: Evaluation criteria such as precision, recall, F1 score, and area under the receiver
operating characteristic (ROC) curve are used to evaluate the effectiveness of the error prediction models. These
metrics help determine the model's ability to identify defective code while minimizing the occurrence of both false
positives and false positives.

Development Workflow Integration: Successful error prediction models have been incorporated into the software
development process [7-9]. During the quality assurance phase, development teams use forecasts to systematically
allocate resources, focus on high-risk regions, and prioritize testing efforts.

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10277

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

S T M Al | e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Continuous Improvement: The error prediction method is iterative. Models are often retrained and improved to
ensure continued efficiency in the face of changing conditions as new data becomes available and the system evolves.

Teams can reduce the chance that bugs will affect end users and improve software quality by incorporating these
predictions into the development process [10].

1.1 Evaluation Phase of the SDLC

Software Defect Prediction (SDP) plays an important role during the Evaluation Phase of the Software Development
Life Cycle (SDLC). It helps to identify modules that may have errors and therefore need a thorough test. This allows
for efficient use of resources while staying within project constraints. However, despite its usefulness, predicting which
modules will present problems can be a challenge. Defect Prediction models come with various problems that can be
difficult to solve [11-15]. Development teams can identify where they are working and can increase industrial results
and reduce development errors by using predictive software defects. In order to detect errors and organize the testing
process, it is possible to predict code segments that are likely to have errors. Accurate prognosis is important for early
diagnosis of the disease in its early stages [16]. The main purpose of several software testers is to anticipate problems.
Software bugs are expected to cost billions of pounds to detect and fix every year. It is expected that automated
assistance to accurately predict defect areas and guide inspectors' work will significantly reduce these costs [17].

ILRESEARCH METHODOLOGY

Using machine learning to optimize software failure prediction in an object-oriented paradigm entails a number of
crucial stages. First, relevant software characteristics like size, coupling, and code complexity are collected as data.
Next, feature selection is done to determine which metrics are most informative. Next, a machine learning model is
chosen in accordance with the attributes of the issue. Furthermore, methods such as model stacking or ensemble
learning may be used to enhance prediction accuracy. Lastly, the improved model is put to use for predicting software
faults in real-world scenarios, continually assessed, and adjusted as needed. This technique uses machine learning to
maximize software failure prediction in an object-oriented paradigm by integrating data pretreatment, model selection,
training, assessment, and deployment [18-20].

The model that is offered suggests that it is possible to predict a task's failure using scientific approaches. Data flows
and task dependencies serve as essential illustrations of processes or computations within scientific applications. By
employing advanced machine learning algorithms for failure prediction, it becomes possible to proactively analyze data
from multiple scientific workflows, thereby mitigating the impact of failures on these workflow operations while
optimizing Cloud resources. This proactive approach involves real-time data analysis. Task failures within the
scheduling of scientific workflows can stem from various factors, such as resource overutilization or underutilization,
exceeding execution time or cost thresholds, incorrect library installations, insufficient memory or disk space, and
similar occurrences. The primary focus of this study's proposed paradigm is understanding task failures (related to
CPU, RAM, disk storage, and network bandwidth) caused by overutilization of resources. The goal of the approach
described here is to develop a model that can monitor data related to scientific operations in real-time and identify
issues at work. The suggested approach analyzes a large number of processes that have been stored in cloud
repositories in order to spot any problems with the process before they happen. The suggested model is based on
experimental results and employs the machine learning strategy that has shown to be the most effective in failure
prediction. Figure 1 illustrates the flowchart outlining defect prediction methods tailored for optimizing resources in a
cloud computing environment. The fault prediction technique encompasses three primary phases: first, employing the
PCA technique to select features from the input dataset; second, classifying the data using Naive Bayes, Random
Forest, and linear regression algorithms; and finally, predicting failures as the concluding step.

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10278

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

S T M Al | e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Input Data Set

NS

Feature Selection Using PCA algorithm

S

Classification - Naive Bayes, Random Forest,
Linear Regression

NS

Failure Prediction

Fig 2. 1: Fault prediction techniques in cloud computing aim to enhance resource optimization.
III.SIMULATION AND RESULT

This Chapter 4 presented a "Simulation and Results," employs convolutional neural networks (CNNs) within a deep
learning framework to construct a software fault prediction model. The chapter focuses on developing an effective
Python-based approach for identifying and forecasting software issues. It begins with comprehensive data gathering,
including software metrics and defect logs, followed by preprocessing steps like data cleaning, handling missing
values, and normalization. Feature engineering is then utilized to select relevant characteristics that enhance fault
prediction accuracy. Leveraging CNNs' ability to learn hierarchical representations from software inputs, the chapter
trains and evaluates the CNN model using metrics such as accuracy, precision, recall, and F1-score. It critically assesses
the CNN model's efficacy in predicting software flaws, offering insights into both its strengths and limitations, thereby
providing a solid foundation for advancing software fault prediction using deep learning methodologies.

1.1 Software Fault Prediction Procedure

a. Steps and Methods

Data Collection

o Collected historical software project data including metrics such as code complexity (e.g., loc, cyclomatic
complexity), Halstead metrics (e.g., volume, difficulty), and defect indicators.

o Sample data metrics:

= Joc: McCabe's line count of code

= v(g): Cyclomatic complexity

* n: Halstead total operators + operands

= defects: Indicator of whether a module has reported defects/

Data Preprocessing

o Cleaned and normalized the data.

o Split data into training and test sets.

Feature Selection

o Employed correlation matrices and feature distance methods to identify relevant features.

o Example of correlation matrix:

e Removed redundant or irrelevant features to improve model performance.

Model Building

e Used various machine learning algorithms including Logistic Regression, Decision Trees, Random Forest, and
ensemble methods.

e Example of building and training a model

Model Evaluation

e Evaluated models using metrics like ROC AUC, Accuracy, Precision, Recall, and F1-score.
e Key results:

o Logistic Regression: ROC AUC score: 0.6087

o Decision Tree: ROC AUC score: 0.6165

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10279

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

S T M Al | e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

o AdaBoostClassifier: ROC AUC score: 0.7511 (best performance)

1.2 Derived Result

With a ROC AUC value of 0.7511, the AdaBoostClassifier showed the greatest performance for SFP. The predicted
accuracy of the model was much enhanced by feature selection, which concentrated on the most important metrics. The
Decision Tree model demonstrated almost flawless accuracy.

1.2.1 Software Simulation Details in Python (Objective 1)

In order to enhance software quality and minimize testing requirements, software fault prediction seeks to detect
defective software modules early in the software development process. By identifying pertinent characteristics and
eliminating superfluous or unnecessary ones, feature selection approaches are essential for improving the performance
of fault prediction models. An extensive summary of feature selection-based software failure prediction is provided
below

Software Fault Prediction
Data Collection: Gather data from prior software projects, which usually consists of measures like code complexity,
churn, developer activity, and past fault history.

data = pd.read_csv('train.csv')
origin = pd.read_csv('jml.csv")
test = pd.read_csv('test.csv')
sample_submission = pd.read_csv('sample_submission.csv')

. loc : numeric % McCabe's line count of code
.v(g) : numeric % McCabe "cyclomatic complexity"
.ev(g) : numeric % McCabe "essential complexity"”
iv(g) : numeric % McCabe "design complexity"”
n : numeric % Halstead total operators + operands
: numeric % Halstead "volume"
: numeric % Halstead "program length"
: numeric % Halstead "difficulty"
: numeric % Halstead "intelligence"
.e : numeric % Halstead "effort"
.b : numeric % Halstead
.t : numeric % Halstead's time estimator
.10Code : numeric % Halstead's line count
.10Comment : numeric % Halstead's count of lines of comments
. 10Blank : numeric % Halstead's count of blank lines
. 10CodeAndComment: numeric
. uniq_Op : numeric % unique operators
. uniq_Opnd : numeric % unique operands
. total_Op : numeric % total operators
.total_Opnd : numeric % total operands
: branchCount : numeric % of the flow graph
. defects : {false,true} % module has/has not one or more reported defects

- — <

N T NS I N I S e T e T e T s T S =
N—=OO0WIANE W= XTI R W —

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10280

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

8.625| ESTD Year: 2013

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)
IJ I Rcc E (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Data Preprocessing
from sklearn import preprocessing

data[['v']]
data[['b']]

scale_v
scale_b

minmax_scaler = preprocessing.MinMaxScaler()

v_scaled = minmax_scaler.fit_transform(scale_v)
b_scaled = minmax_scaler.fit_transform(scale_b)

data['v_ScaledUp']
data['b_ScaledUp']

pd.DataFrame(v_scaled)
pd.DataFrame(b_scaled)

data

desc = pd.DataFrame(index = data.columns)
desc['count’'] = data.count()

desc['nunique'] = data.nunique()

desc['%unique'] = desc['nunique'] / len(data) * 1@@
desc['null'] = data.isnull().sum()

desc['type'] = data.dtypes

desc = pd.concat([desc, data.describe().T], axis = 1)

desc
count nunigue %unigue null type count mean std min 25% 50% 5% max
id 101763 101763 100.000000 0 ini64 101763.0 50221.000000 29376.592059 0.0 2544050 50881.00 76321.50 101762.00
loc 101763 378 0.371451 0 floaté4 101763.0 37.347160 54600401 1.0 13.00 22.00 42.00 3442.00
vig) 101763 106 0.104164 0 floaté4 101763.0 5492684 7900855 10 200 3.00 6.00 404.00
evig) 101763 m 0.069770 0 floaté4 101763.0 2845022 4631262 10 1.00 1.00 3.00 165.00
ivig) 101763 24 0.082545 0 floai64 101763.0 3.408326 5534541 1.0 1.00 2.00 4.00 402.00
n 101763 836 0.821517 0 floaté4 101763.0 96.655995 171147191 0.0 25.00 51.00 111.00 8441.00
v 101763 4515 4 436780 0 floaté4 101763.0 538 280956 1270791601 00 97 67 23279 560.25 80843.08
I 101763 55 0.054047 0 floaté4 101763.0 0.111634 0100096 00 0.05 0.09 0.15 1.00
d 101763 3360 3.301789 0 floaté4 101763.0 13.681881 14121306 0.0 5.60 9.82 12.00 418.20
i 101763 5171 5.081415 0 floaté4 101763.0 27.573007 22856742 0.0 15.56 2336 3434 569.78
e 101763 8729 8577774 0 float4 101763.0 20853580876 190571405427 00 56473 225623 1019324 1684662112
b 101763 315 0.309543 0 floaté4d 101763.0 0.179164 0421344 00 0.03 003 0.19 26.95
t 101763 2608 8.458870 0 floats4 101763.0 1141.357982 9862795472 0.0 3138 125.40 565.92 935923.39
I0Code 101763 298 0.292837 0 int64 101763.0 22.802453 38541010 0.0 7.00 14.00 25.00 2824.00
IOComment 101763 91 0.089423 0 intB4 101783.0 1773945 5002412 00 0.00 0.00 1.00 34400
I0Blank 101763 94 0.092371 0 int64 101763.0 3.979365 6382358 00 1.00 2.00 5.00 219.00
locCodeAndComment 101763 29 0.028498 0 int64 101763.0 0.196604 0992906 0.0 0.00 0.00 0.00 43.00
unig_Op 101763 70 0.068787 0 floaté4 101763.0 11.896121 6749540 0.0 8.00 1.00 16.00 410.00
unig_Opnd 101763 176 0.172951 0 float64 101763.0 15.596671 18.064261 0.0 7.00 12.00 20.00 1026.00
total_Op 101763 623 0.612207 0 floaté4d 101763.0 57.628116 104537660 0.0 15.00 30.00 66.00 5420.00
total_Opnd 101763 485 0.476598 0 floaté4 101763.0 39.249693 71692309 0.0 10.00 20.00 45.00 3021.00
branchCount 101763 144 0.141505 0 floaté4 101763.0 9.839549 14412769 1.0 3.00 5.00 11.00 503.00
defects 101763 2 0.001965 0 bool NaN NaN NaN NaN NaN NaN NaN NaN

Feature Selection: Feature selection involves identifying and selecting a subset of relevant features that contribute the
most to the prediction model. This can be achieved using various techniques:

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10281

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

www.ijircce.com FHESELLE 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)
IJ I Rcc E (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

I ————————.
fig, ax = plt.subplots(7, 3, figsize = (15, 25), dpi = 308)
ax = ax.flatten()
for i, column in enumerate(col_list):

sns.kdeplot(data[column], ax=ax[i], color=pal[@])
sns.kdeplot(test[column], ax=ax[i], color=pal[2])

ax[i].set_title(f'{column} Distribution', size = 14)
ax[i].set_xlabel(None)

fig.suptitle('Distribution of Feature\nper Dataset\n', fontsize = 24, fontweight = 'bold")

fig.legend(['Train’, 'Test'])
plt.tight_layout()

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10282

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

-9798| Impact Fac 8.625| ES ear: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)
IJ I Rcc E (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

— Tain
— Test
Distribution of Feature
per Dataset
loc Distribution v(g) Distribution ev(g) Distribution
0475
0025 .
0150
0020 0125 04
%‘ 0015 % 0.100 203
] 8oors g
S ao0 e oz
0.050
0.005 0025 01
0.000 0.000 00
0 500 1000 1500 2000 2500 3000 3500 0 100 200 300 400 0 2 50 75 100 125 150
iv(g) Distribution n Distribution v Distribution
025 —_— 00012
020 00010
0.006
= 2z 200008
G 015 B H
a & 0.004 & 0.0006
010
00004
0.002
ROS k 0.0002
000 0.000 00000
0 100 200 300 400 0 2000 4000 6000 8000 0 20000 40000 60000 80000
| Distribution d Distribution i Distribution
0.06
¥
0030
6 0.05
0025
5 0.04
z, = 20020
Gl a g 0015
2 002 0010
1 001 0005
0 0.00 0000
00 02 04 08 0.8 10 [} 100 200 300 400 0 100 200 300 400 500 600
14 fe5 e Distribution b Distribution t Distribution
12 B 0.00020
10
3 0.00015
208 = 2
i]]
2 2 2
s &, 2 0.00010
04
1 0.00005
02
00 0 0.00000
000 025 050 075 100 125 150 175 0 5 10 15 20 25 0 200000 400000 600000 800000
67
I0Code Distribution I0Comment Distribution |OBlank Distribution
0175
05
a0 0:150
0.025 o 0425
20020 203 20100
] i]
2 2 2
8 0018 2 3 8 oovs
0010 0050
01
0.005 0025
0.000 00 0000
0 500 1000 1500 2000 2500 0 B0 100 150 200 250 300 350 0 100 200 300 400
locCodeAndComment Distribution unig_Op Distribution unig_Opnd Distribution
005
38 0.07
0.08 0.04
20
0.05
E = 2003
G515 5004 5
a H a
o 0.03 002
0.02
wE a0t
0.01
0.0 0.00 0.00
0 10 20 30 40 0 100 200 300 400 0 200 400 600 800 1000
total_Op Distribution total_Opnd Distribution branchCount Distribution
0014 0.020 008
0012
0010 0015 006
= z 2
gor gnmu Euua
O 0.008 o a
0.004 0.005 a0z
0.002
0.000 0.000 000
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000 0 200 400 600 800

Fig 3. 1: Correrelation Matrix

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10283

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024| DOI: 10.15680/1JIRCCE.2024.1208008

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

&,"-;j International Journal of Innovative Research in Computer
N A and Communication Engineering (IJIRCCE)
I J I R c c E (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

L IR mE——

Correrelation Matrix
heatmap(data.drop('id', axis = 1), "Train’)
heatmap(test.drop('id', axis = 1), Test)

Train Dataset Correlation Matrix

-075

0.50

025

0.00

10Code

0.32

039 WUEPRREVE -0.39

021 029 029 02

I0Comment

ICBlank
-0.25

locCodeAndComment
unig_Op

unig_Opnd 050

total_Op
total_Opnd
branchCount

-0.75

defects

8 @ 3 B
- = >
3 =

ICComment
I0Blank
uniq_Opnd
total_Opnd
branchCount
defects

locCodeAndComment

Fig 3. 2: Feature distance
IV.CONCLUSION AND FUTURE SCOPE

It begins with data collection from historical software projects, including various complexity and defect metrics,
followed by rigorous preprocessing steps such as data cleaning, normalization, and feature selection. The chapter
explores different machine learning algorithms including Logistic Regression, Decision Trees, and Ada Boost
Classifier, with Ada Boost Classifier achieving the highest performance (ROC AUC of 0.7511) for fault prediction.
Through critical evaluation, the chapter demonstrates the effectiveness of CNNs and feature selection in enhancing

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10284

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

N: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

software quality and reducing testing requirements, providing a solid foundation for advancing fault prediction
methodologies.

REFERENCES

1. Wahono, R. S. (2015). A systematic literature review of software defect prediction. Journal of software
engineering, 1(1), 116.

2. Rawat, M. S., & Dubey, S. K. (2012). Software defect prediction models for quality improvement: a literature
study. International Journal of Computer Science Issues (IJCSI), 9(5), 288.

3. Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using ensemble learning on selected
features. Information and Software Technology, 58, 388402.

4. Okutan, A., & Yildiz, O. T. (2014). Software defect prediction using Bayesian networks. Empirical Software
Engineering, 19, 154181.

5. Nam, J. (2014). Survey on software defect prediction. Department of Compter Science and Engineerning, The Hong
Kong University of Science and Technology, Tech. Rep.

6. He, P, Li, B, Liu, X., Chen, J., & Ma, Y. (2015). An empirical study on software defect prediction with a simplified
metric set. Information and Software Technology, 59, 170190.

7. Jing, X. Y., Ying, S., Zhang, Z. W., Wu, S. S., & Liu, J. (2014, May). Dictionary learning based software defect
prediction. In Proceedings of the 36th international conference on software engineering (pp. 414423).

8. Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect prediction. IEEE Transactions on
Reliability, 62(2), 434443.

9. Ma, Y., Luo, G, Zeng, X., & Chen, A. (2012). Transfer learning for crosscompany software defect
prediction. Information and Software Technology, 54(3), 248256.

10.Li, M., Zhang, H., Wu, R., & Zhou, Z. H. (2012). Samplebased software defect prediction with active and
semisupervised learning. Automated Software Engineering, 19, 201230.

11.Sun, Z., Song, Q., & Zhu, X. (2012). Using codingbased ensemble learning to improve software defect
prediction. I[EEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6),
18061817.

12. Arora, 1., Tetarwal, V., & Saha, A. (2015). Open issues in software defect prediction. Procedia Computer
Science, 46, 906912.

13. Wang, T., & Li, W. H. (2010, December). Naive bayes software defect prediction model. In 2010 International
conference on computational intelligence and software engineering (pp. 14). Ieee.

14. Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher bias: The use of machine learning in software defect
prediction. IEEE Transactions on Software Engineering, 40(6), 603616.

15.Czibula, G., Marian, Z., & Czibula, I. G. (2014). Software defect prediction using relational association rule
mining. Information Sciences, 264,260278.

16. Rodriguez, D., Herraiz, 1., Harrison, R., Dolado, J., & Riquelme, J. C. (2014, May). Preliminary comparison of
techniques for dealing with imbalance in software defect prediction. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (pp. 110).

17.Ren, J., Qin, K., Ma, Y., & Luo, G. (2014). On software defect prediction using machine learning. Journal of
Applied Mathematics, 2014.

18. Arar, O. F,, & Ayan, K. (2015). Software defect prediction using costsensitive neural network. Applied Soft
Computing, 33, 263277.

19. Yang, X., Tang, K., & Yao, X. (2014). A learningtorank approach to software defect prediction. /[EEE Transactions
on Reliability, 64(1), 234246.

20. Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010, December). A comparative study of ensemble feature
selection techniques for software defect prediction. In 2010 Ninth International Conference on Machine Learning and
Applications (pp. 135140). IEEE.

21.Nevendra, M., & Singh, P. (2021). Software defect prediction using deep learning. Acta Polytechnica
Hungarica, 18(10), 173-189.

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10285

© 2024 IJIRCCE | Volume 12, Issue 8, August 2024 DOI: 10.15680/1JIRCCE.2024.1208008

wwwr.'ij'ircce.com | e-ISSN: 2320-9801, p-ISSN: 2320-9798| Impact Factor: 8.625| ESTD Year: 2013|

International Journal of Innovative Research in Computer
and Communication Engineering (IJIRCCE)
IJ I Rcc E (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

22.Batool, I., & Khan, T. A. (2022). Software fault prediction using data mining, machine learning and deep learning
techniques: A systematic literature review. Computers and Electrical Engineering, 100, 107886.

23.Batool, 1., & Khan, T. A. (2023). Software fault prediction using deep learning techniques. Sofiware Quality
Journal, 31(4), 1241-1280.

IJIRCCE©2024 | AnISO 9001:2008 Certified Journal | 10286

INTERNATIONAL

STANDARD INNO @ SPACE

SERIAL A

ﬁ\“ﬁﬁf“‘ SJIF Scentific Journal Impact Factae crossr ef

INTERNATIONAL JOURNAL
OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

(%) 9940 572 462 (2) 6381 907 438 £ ijircce@gmail.com

r :.-'.4.' £ H
WWW. “lrcce.cnm Scan to save the contact details

	II.RESEARCH METHODOLOGY
	III.SIMULATION AND RESULT
	1.1 Software Fault Prediction Procedure
	1.2 Derived Result
	1.2.1 Software Simulation Details in Python (Objective 1)

	IV.CONCLUSION AND FUTURE SCOPE
	REFERENCES

