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ABSTRACT: Residue Number System (RNS) is a non-conventional number system that uses remainders to represent 
numbers. These remainders, called residues are converted back to decimal representations using two types of 
converters. A forward converter converts from decimal representation to residue whiles a reverse converter converts 
from residues to decimal representations respectively. In this paper, a fast residue-to-decimal converter for the moduli 
set (ퟐ풏 − ퟏ,  ퟐ풏,ퟐ풏 + ퟏ) is proposed. The algorithm used to convert the residues of the moduli to decimal number is 
based on the Chinese Remainder Theorem (CRT). The approach does not allow full reverse conversion. The resulting 
implementation is based on two carry-save adders, two carry-propagate adders and a multiplexer. After comparing the 
proposed scheme to the state-of-the-art reverse converters in terms of area and delays, it is considered to be faster. 
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I. INTRODUCTION 
 
Numbers play an important role in computer systems. Numbers are the basis and object of computer operations. The 

main task of computers is computing, which deals with numbers all the time [7]. For that matter, the study of number 
systems is very necessary as computers generally work on numbers. Residue Number Systems (RNS) is a non-
weighted number system that utilizes remainders to represent numbers. In RNS, a set of moduli are chosen which are 
independent of each other. An integer is represented by the residue of each modulus and the arithmetic operations are 
based on the residues individually. Let {푚 ,푚 , . . . ,푚 } be a set of positive integers all greater than 1. 푚 is called a 
modulus, and the n-tuple set {푚 ,푚 , . . . ,푚 } is called moduli set. Consider an integer number 푋. For each modulus in 
{푚 ,푚 , . . . ,푚 }, we have 푥 = X 푚표푑m (denoted as |푋| ). Thus, a number 푋 in RNS can be represented as 푋 =
{푥 ,푥 , . . . , 푥 } [7]. 

Now, to calculate the number X from its residues, the Chinese Remainder Theorem (CRT) is formulated and applied 
as follows: 

X = ∑ M M x           (1) 

where; M = ∏ m ; M =  ; |M  × M = 1 
The CRT provides an algorithmic solution of decoding the residue encoded number back into its conventional 

representation. This theorem is considered the cornerstone in realizing the utilization of RNS [2]. Residue Number 
System (RNS) belongs to the second school of thought, to enhance system performance, it was proposed for 
computation-intensive application design because of its ability to support high-speed concurrent arithmetic [8]. These 
RNS features has been put to good use in various Digital Signal Processing (DSP) applications [1]. Today RNS is also 
regarded as one of the most popular techniques for reducing the power dissipation and the computation load in Very 
Large Scale Integrated Circuits (VLSI) system design [9].  

RNS is a non-weighed number system with special carry characteristics and a potential that results in high 
computations. In RNS, addition, subtraction and multiplication are inherently carry-free, for instance, each digit of the 
result is a function of only one digit from each operand, hence independent of all other digits. As a result of the carry-
free property, it is feasible to mechanize operations such as addition, subtraction and multiplication. These inherent 
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features enable RNS utilization in the fields of Digital Signal Processing (DSP), computational intensive areas such as; 
digital filtering, convolutions, correlations, Discrete Fourier Transform (DFT) computations, Fast Fourier Transform 
(FFT) computations and direct digital frequency synthesis [6], [5]. 

However, irrespective of the fact that, the residue number system supports high-speed parallel arithmetic, it is not 
very popular in processor construction due to the following difficult RNS arithmetic operations: reverse conversion 
between residue and binary numbers, overflow detection, magnitude comparison, sign detection, moduli selection, etc. 
However, solutions to some of these problems are currently being developed as a result of ongoing research. Out of 
these numerous RNS challenges, moduli selection and reverse conversion are the two most critical issues [4]. Many 
interesting reverse converters have been proposed for many moduli sets such as (2 − 1,  2 , 2 + 1) [10], (2 −
1,  2 , 2 − 1) [3], to mention just a few. In [10] a new and uniform Adder Based algorithm using the New Chinese 
Remainder Theorem (CRT) for the RNS to binary conversion is presented whilst [3] presents a new residue to binary 
converter based on Mixed-Radix Conversion (MRC). 

In this paper, the proposed scheme uses partial reverse conversion based on the CRT technique. 

II. RELATED WORK 
 

In a study by Molahosseini and Navi (2007), two efficient residue to binary converters for the new three-moduli set {2n, 
2n+1 + 1, 2n+1 – 1} is presented. The proposed moduli set consists of pairwise relatively prime and balanced moduli, 
which can offer fast internal RNS processing and efficient implementation of the residue to binary converter. The new 
Chinese Remainder Theorem (CRT-I) is applied to derive an efficient residue to binary conversion algorithm for the 
new three-moduli set. Hardware implementation of the proposed residue to binary converters for the moduli set consist 
of one (2n+2)-bit carry save adder (CSA) with End Around Carry (EAC) and a modulo (22n+2–1) adder. The proposed 
residue to binary converters are memoryless. In comparison with other residue to binary converter for a three-moduli 
set, the proposed converters have better area-time complexity whiles Hiasat and Abdel-Aty-Zohdy (1995), introduced a 
new algorithm for implementing residue to binary conversion for the moduli set (2k, 2k-1, 2k-1-1). The algorithm 
incorporates new compact forms for the multiplicative inverses. Binary adders are used in this proposed algorithm for 
the hardware implementation. If the system is pipelined, then the throughput rate of the converter increase to the 
equivalent of that of a single (3k-1) bits binary adder. Thus, hardware requirements and execution time are less, with 
corresponding larger dynamic range. Therefore, this moduli set could have an increasing role in designing residue-
based arithmetic units for different computing applications. In 2011, Stamenkovic and Jovanovic published an 
alternative architecture derived by Mixed-Radix Conversion (MRC) for a four-moduli set. Due to the use of simple 
multiplicative inverses of the proposed moduli set, there is considerably reduction in the complexity of the RNS to 
binary converter based on the MRC. The hardware architecture for the proposed converter is based on the adders and 
subtracters, without the needed Read Only Memory (ROM) or multipliers. The implementation consists of two levels. 
The first level, is the algorithm to convert RNS number to mixed-radix digits. The algorithm is improved by using 
optimal choice of form of moduli set. The second level is a simplified hardware architecture. Carry-Save-Adder (CSA) 
with End-Around-Carry (EAC) is replaced with Borrow-Save-Subtracter that avoids two complement operations, and 
EAC adder. Further, the binary subtraction is optimized by using Borrow-Propagate-Subtracter (BSS) with End-
Around-Borrow (EAB) which avoids one complement operation and the use of multiplexer(s). The proposed converter 
architecture is memoryless enabling efficient implementation. However, Hariri, Rastegar, and Navi (2006) studied the 
moduli set {2n, 22n-1, 22n+1} and proposed a reverse converter. This moduli set provides the dynamic range (DR) of 
2n×(24n-1) and the implementation results have shown that its reverse converter has better area and time complexities in 
comparison with the moduli sets with the same dynamic range categories. The authors showed that for majority of the 
similar dynamic ranges, the proposed reverse converter is faster than the reverse converter of {2n-1, 2n, 2n+1} but the 
reverse converter of {2n-1, 2n, 2n+1} has less area.Pettenghi et al. (2013),also proposed methods to design memoryless 
reverse converters for the proposed moduli sets with large dynamic ranges, up to (8n+1)-bit. Due to the complexity of 
the reverse conversion, both the Chinese Remainder Theorem (CRT) and the Mixed Radix Conversion (MRC) are 
applied in the proposed methods to derive efficient reverse converters. Experimental results suggest that the proposed 
vertical extensions allows the reduction of the area-delay-product up to 1.34 times in comparison with the related state-
of-the-art. The horizontal extensions allow larger and more balanced moduli sets, resulting in an improvement of the 
RNS arithmetic computation, at the cost of lower reverse conversion performance. 
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III. PROPOSED ALGORITHM 
 
Given the RNS number 푋 = (푥 ,푥 ,푥 ) with respective moduli set {2 − 1, 2 , 2 + 1}, where; 푚 = 2 −

1,푚 = 2 , and푚 = 2 + 1, then the following holds true; 
푀 = 2 (2 + 1); 푀 = (2 − 1); and 푀 = 2 (2 − 1)       (2) 
Theorem 1: For the given moduli set, then;  
|푀 | = |2 |            (3) 
|푀 | = |−1|            (4) 
|푀 | = |−2 |            (5) 
The proof of (3) – (5) is demontrated in [5]. 
Theorem 2: For the given moduli set, any RNS number 푋 can be represented as; 
 푋 = 2 휉 + 푥            (6) 
where; 

휉 =
|(2 푥 + 푥 )2 | + |−2 푥 |

+|−푥 | + |+2 푥 |        (7) 

Proof: Substituting equations (2) through to (5) into (1) and factorizing out 2 we obtain (6). 
 

HARDWARE IMPLEMENTATION 
Here, the mathematical formulations and simplifications for obtaining an effective and robust design is presented. The 
design and usage of simplified architecture that is cost effective and less complex is also presented. 
A. Design Considerations and Mathematical Simplifications 
Hardware implementation considers significantly, the minimisation of production cost and cost of usage. It is therefore 
important to further simplify equation (7) to equation (8) to reduce the implementation cost, which is achieved by 
reducing equation (7) to utilise Adders and Multiplexers. 
Equation (7) can further be simplified as follows; 
휉 = |휑 + 휑 + 휑 + 휑 |           (8) 
where; 
휑 = |(2 푥 + 푥 )2 |           (9) 
휑 = |−2 푥 |                       (10) 
휑 = |−푥 |                        (11) 
휑 = |2 푥 |                                                 (12) 
Now, considering equations (9)-(12) and simplify them for implementation in a VLSI system. It is necessary to note 
that 푥 ,  means the j-th bit of 푥 . 
Evaluation of 훗ퟏ 
The residue 푥  can be represented as follows; 
푥 =   푥 , …푥 , 푥 ,                                                  (13) 
Thus, 
|(2 푥 + 푥 )2 | = 

2 푥 , … 푥 , 0. . .0
 

+ 0. . .0
 

푥 , …푥 ,  

= 2 푥 , …푥 , 푥 , 푥 , …푥 , 푥 ,  
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= 푥 , 푥 , …푥 , 푥 ,

 
푥 , …푥 , 푥 ,                  (14) 

Evaluation of 훗ퟐ: 
The residue 푥  can be represented as follows; 
푥 = 푥 , … 푥 , 푥 ,                  (15) 
Therefore, 

|−2 푥 | = 푥 , …푥 , 푥 , 11. . .11
 

                (16) 
Evaluation of 훗ퟑand 훗ퟒ: 
The residue 푥  can be represented as follows; 
푥 = 푥 , … 푥 , 푥 ,                  (17) 
Therefore, 

휑 = |−푥 | = 11. . .11
 

푥 , …푥 , 푥 ,
  

              (18) 

Again,  

휑 = |2 푥 | = 0푥 , …푥 , 푥 ,
  

00. . .00
 

              (19) 

B. The Proposed Architecture 
휉is computed according to equation (8) where all the parameters are defined in equations (9) – (12). Carry Save Adders 
(CSAs) and Carry Propagate Adders (CPAs) are used to reduce the hardware complexity. As shown in Figure 1, 휉 is 
computed using CSAs 1and 2 and two regular 2푛-bit CPAs 1 and 2. The results of these CPAs are passed on to a 
multiplexer (MUX 1) which would then pass either of them down. MUX 1 will pass on the result of CPA 1 if the carry 
out of CSA 1 is a ‘0’, otherwise the result of CPA 2 is passed on. 
CSAs 1 and 2 require an area of 2푛∆  each as well as CPAs 1 and 2. Therefore, in order to obtain 휉, a total area of 
8푛∆  will be required. 
Regarding the delay, each CSA (i.e. CSAs 1 and 2) impose a delay of 퐷  while the CPA pair 1 and 2 impose a delay 
of  2푛퐷  since they are in parallel, thus delay imposed on computing 휉is (2푛 + 2)퐷 . The final computation for (6) 
is a concatenation which does require any hardware. 
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The schematic diagram for the proposed scheme is shown below; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. SIMULATION RESULTS 
 
In this section, the performance of the proposed system is evaluated by comparing it with [10] and [3]. The 

evaluation is done in terms of area (A), delay (D) and AD2. From the AD2 comparison, it can be concluded that, the 
proposed scheme is better.  

 
Table 1: Area, Delay, AD2 Comparison 

 
Converters Area Delay AD2 

[10] 4n 4n+2 64n3+64n2+16n 
[3] 9n+2 10n+5 900n3+1100n2+425n+50 
Proposed Scheme 8n 2n+2 32n3+64n2+32n 

 
The graph below in Figure 2 shows the performance of the various schemes. In the graph, it is clear that the 

proposed scheme is more efficient in terms of area and delay comparison. 
 

2푛 퐵푖푡푠 CSA 1 

2푛 퐵푖푡푠 CSA 2 

2푛 퐵푖푡푠 CPA 1 

푥  푥  푥  

Operands Preparation (OPPR) 

푐  

휑  휑  휑  휑  

푠  

푐  푠  

2푛 퐵푖푡푠 CPA 2  0 

MUX 1 0 1 

1 

휉 
Figure 1: Block Diagram of the Reverse Converter 
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Figure 2: Graph of Area and Delay Comparison 

 

V. CONCLUSION AND FUTURE WORK 
 
In this paper, a fast residue-to-binary converter for the moduli set (2 − 1,  2 , 2 + 1) has been proposed. The 

approach does not require full RNS-binary conversion. Theoretical analysis from Table 1 shows that, the proposed 
scheme is more efficient as compared to the state-of-art schemes in [3] and [10] in the Area-Delay comparison  
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