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ABSTRACT: We show how you can use the self-organization algorithm Kohonen to process data with missing values 
and estimate them. After methodological reminder, we illustrate our subject from three applications to actual data 
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I.INTRODUTION 
 

The processing of data with missing observations is a concrete problem and always embarrassing when it comes to 
actual data. Indeed in applications, it is very often in the presence of observations for which is not available to all 
Descriptive values of variables, and this happens for many reasons: errors seizure not indicated topics in surveys; 
outliers are preferred delete data easily collected, not available official statistics, etc. Most statistical software (such as 
eg SAS) suppress purely and simply incomplete observations, but if it has no practical consequences when has 
extensive data, this can remove any interest in the study if the number of remaining data is too low. To prevent and 
remove data can be replaced by a missing value average of the corresponding variable, but this average may be a very 
bad approximation in the case where the variable has a high dispersion.. We focus particularly here in the Self 
organization algorithm  
 

II.RELATED WORK 

In the following, we presenting an example of real data. This is a classic example of data analysis, taken from Bouroche 
and Saporta, "Data analysis" (1980). This is the structure State spending, measured over 24 years between 1872 and 
1971 by a vector of dimension 11. In this example, we have artificially suppressed values in the original data, worth 
about 11-8 of 11 values, randomly selected for assess the accuracy of the estimates obtained by replacing these values 
with the values associated vectors corresponding codes. 
 

III.ADAPTATION OF A Self organization Algorithm 
 

We assume that the observations are real-valued vectors of dimension p  
When exhibit incomplete data vector x, one first determines the set Mx numbers of the missing components. Mx is a 
subset of {1, 2, ..., p}. Si (C1,C2... Cn) Is the set of code vectors at this time, the code vector is calculated winner 
  ௜(଴)(௫)associated with x and its class, placingܥ

 
where the distanceis calculated on these componentsin the vector x. 
 
They can be used vectors with missing data in two ways. 
 
If you want to use when building code vectors, eachstep, once determined the number of the winning unit, the update of 
code vectors (theWinner and neighbors) concerns only the components present in the vector. 
If there is sufficient data to dispense incomplete vectors to build the map, you can also simply classify, after 
construction of the map,incomplete vectors affecting the class whose code vector is the closest,the sense of distance 
restricted to these components. 
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This gives excellent results in the course that the variable is not or almost completely absent, and also insofar as the 
variables are correlated,which is the case in most real data sets. 
 

IV.ESTIMATING MISSING VALUES 
 

Whatever the method used to use the data with missing values, the most interesting properties of the 
algorithm, and it is possible to estimate a posterior I missing values If Mxis the set of numbers of the missing 
components of the observation x, and x is classified in class i for each index k M It is estimated x k b. 

 

As the end of the Self organization learning algorithm is to "zero neighbor," we know the code vectors are 
asymptotically close to the average of their class. This estimation method is thus to estimate the missing values of a 
variable by its average in the class. 
Clearly, this estimate is more accurate than classes formed by the algorithm are homogeneous and well separated from 
each other. Numerous simulations showed as in the case of synthetic data than real data, in the presence of correlated 
variables, the accuracy of these estimates is remarkable.  
To increase accuracy, it offers in his thesis to produce several versions of the Self organization algorithm, and take the 
average of the estimates obtained in each card. 
 

V. STRUCTURE OF THE EXPENSES OF THE STATE, FROM 1872 TO 1971 

 
For 24 years, separated into 3 categories (14-18 before the war, between the wars, after WWII) was measured 11 
variables representing the state expenditure in different sectors: Public authorities, Agriculture, Commerce and 
Industry, Transport, Housing and Spatial Planning, Education and Culture, Social Welfare, Veterans fighters, Defense, 
Debt, Miscellaneous? So this is a small example, with 24 observations of 11 dimensions, without values missing. 
A simple analysis of main components provides excellent representation even in two dimensions (64% of variance 
explained). See Figure 6, the representation of variables and FIG, the representation of years. 

 
 

Representation of years on the first principal plane. We distinguish 
Perfectly all three groups. 

 



  

                         ISSN(Online): 2320-9801 
          ISSN (Print) :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 6, June 2016                  

Copyright to IJIRCCE                                                         DOI: 10.15680/IJIRCCE.2016. 0406194                                             11291 

 

Note that years fall into three groups, corresponding to the three clearly defined periods (before World War I, between 
the wars, after WWII). Only the year 1920, the first year it appears post Expenditure devoted to veterans is placed with 
the first group, whereas it belongs to the second. 
 
The years are shown in a Self-organization map of size 3 3 and observes the same groupings. Years were grouped into 
three classes with a hierarchical classification code vectors 
 

 
 

In the following figure shows the Self organization maps obtained after artificially deleted a number of values. Instead 
of writing the precise date, we Note 1, 2 or 3, depending on the period. Is removed from January to August values per 
year (about 11 in total) randomly. The maps obtained with the grouping into three classes by the method of hierarchical 
classification are presented in Figure.4 
 

1 suppressed value 2 suppressed values 
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3 suppressed values 4 suppressed values 

5 suppressed values 6 suppressed values 

7 suppressed values 8 suppressed values 

We see that the super-classes remain consistent as long as does not remove more 3 values per year, or 27% of 
values. Then classes mingle years. The years are marked 1, 2, 3, following the period. 
Then estimated in each case the values that had been deleted. The following table shows in each case the mean square 
error. Figure 10 shows the evolution of this error based on the number of deleted values 
 

Val Number 1 2 3 4 5 6 7 8 

 0.39 0.54 0.73 1.11 1.31 1.30 1.27 1.39 
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Mean squared error estimation based on the numberdeleted values in each year 
 
it is found that the error remains very low when no longer removes 3 values per year. Then the error ceiling, this is due 
to the fact that the number of data (24) and vectors codes (9) are both low. The components of vectors are available 
codes limited number, and the estimates are in this case in all these components. 

 
VI.CONCLUSION 

 
So we showed these three examples how it is possible and desirable to use Self organization maps when the available 
data have missing data. Good certain estimates and classes obtained will be more relevant than variables Descriptive 
data are well correlated.  
Example shows how this method allows estimating missing data accuracy. The data thus completed can then be 
subjected to any conventional treatment. 
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