

 Volume 10, Issue 7, July 2022

Impact Factor: 8.165

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6451

Performance Evaluation of Lossless Data
Compression Algorithms

Gideon Asante1, Abdul-Barik Alhassan2, Abdul-Mumin Salifu3

Department of Computer Science, University for Development Studies, Tamale, Ghana 1&2

Department of Information Systems and Technology, C.K. Tedam University of Technology and Applied Sciences,

Navrongo, Upper East Region-Ghana 3

ABSTRACT:Our world today is increasing in demand for information storage and data transfer thereby increasing the
significance of its compression (data compression). Data compression therefore is a method used to reduce the size of
data on storage or transit. This is helpful and necessary when large file(s) are to be transmitted on a network or stored.
There are mainly two categories of data compression (lossy and lossless), however in this paper, lossless method of
data compression is considered. A review of different lossless compression algorithms are evaluated and tested on
some files of different size and format. Run-Length Encoding, Huffman Algorithm and the Shannon-Fano Coding are
used in this research. Their performance are evaluated based on size, ratio and speed of execution or compression time.
The Huffman Algorithm performs better in terms of compression size while Run-Length Encoding performs better in
terms of execution time.

KEYWORDS: Data Compression, Lossless, Huffman Coding, Run-Length Encoding, Shannon-Fano

I. INTRODUCTION

Data compression is one of the areas of interest in our world today as far as data storage and transmission is concern. It

is the process by which a particular data is represented with lesser storage size by converting it to another form.Data

compression has benefited our world for some decades. With the use of data compression techniques, much disk

storage will be saved or transmission bandwidth, thus by reducing the consumption of resources [3, 11, 13].

Basically, two main types or categories of data compression exist; Lossy and Lossless datacompression. Lossy, as the

name suggest, deals with removing some part of the data which takes much space to make the data small in size. In

lossy data compression, the removed part or details cannot be retrieved (data cannot be restored to original state in

Lossy Data Compression technique) [11, 12, 13].

Lossless data compression does not seek to remove part of data but seeks to reduce file size, such that, the same file can

be restored or decompressed to the original state. The principle used by Lossless data compression is statistical

modelling approach which check the probability of a phrase/character appearing. With the use of such technique, a

string or characters of some size can be re-characterised with few, thus by removing a good sum of excess or extra

characters [7].

There are different algorithms that are designed either with specific sort of data in mind or with assumption about what

sorts of redundancy the uncompressed data are likely to contain. In this research, Run-Length Encoding (RLE)

algorithm, Huffman algorithm and Shannon-Fano algorithm are examined based on their performance in terms of

compression size, ratio and time.

II. RELATED WORK

The fundamental objective of data compression is to figure out and eliminate redundancy through different efficient

methods; so that the compressed data can save space [10].To eliminate the redundancy, some code notation is used to

represent the source file and this coded file is known as ‘encrypted file’. With efficiency in mind, the compressed file

must be less in size than the source file. Decompression technique is used to get back the original file [1, 6, 10].

Statistical Compression and Dictionary Compression Techniques are used on text data and in statistical compression

techniques, arithmetic coding does better than other algorithms. Also, the Lempel-Ziv Banikazemi (LZB) performs best

than other Lempel-Ziv (LZ77) family [5, 8, 10].

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6452

III. MATERIALS AND METHODS

The following materials and methods were used in order to evaluate the performance of the algorithms under

consideration.

A. Run-Length Encoding (RLE)

Run-Length Encoding (RLE) is one of the simplest when it comes to lossless data compression. RLE is mostly used for

data with symbols of repetitions. The length of the text or string is known as the Run. The main point behind RLE is to

symbolise redundant characters as pairs[10, 11, 13].

The algorithm for the Run-Length Encoding (RLE) is depicted below;

Start

Count characters of the source file (Sf)

While (|Sf| > 0)

Count occurrences of characters

Append current character and its count to the result

(Example; Encoding+=string(count)+Sf(index))

Stop

For example, consider a string “AABBCCCADDDDDD” of repeated sequence, when RLE is performed on the string,

notice that, the character “A” appears two times (2A), “B” appears two times (2B), “C” appears three times (3C), “A”
appears again (1A), and lastly, “D” appears six times (6D). So, the original string of 14 bytes (characters) can now be

represented as 2A2B3C1A6D thus 10 bytes (characters) after the use of RLE. However, the biggest problem that comes

with Run-Length Encoding is that, sometimes the compressed text or string can be bigger than the original file. For

example, a string “AABCDEFG” of size 8 bytes (characters), when RLE is performed on it, it results in; 2A, 1B, 1C,

1D, 1E, 1F and 1G. Therefore, the compressed file will be “2A1B1C1D1E1F1G” which is 14bytes (characters), bigger

than the original file of size 8 bytes[10].

B. Huffman Coding Algorithm

In 1950, in an information theory class at Massachusetts Institute of Technology (MIT), a student named
DavidHuffman, developed an algorithm and was named after the inventor as Huffman Coding algorithm. When it

comes to string or text compression, Huffman algorithm is known to be more successful or gives better results [3, 12].

The main idea behind Huffman algorithm is to substitute fixed-length codes by variable-length codes, meaning it deals
with ASCII characters in compression. In Huffman coding, files are turned to binary trees. The leaves of the binary tree
are represented by the characters, in the binary tree, the successful construction of the tree is a means of determining

the Huffman code. Huffman coding reduces the total number of bits used without information loss [2, 11].

The algorithm for the Huffman Coding is depicted below;

Start

 Count each character in source file

 Sort to non-decreasing order

 Create leaf node (character, frequency f, left child, right child) of the tree for each character and then put nodes into
 queues Q

 While (|Q| >= 2) do

 Start

 Pop first two nodes(𝑛1, 𝑛2) with lowest f from sorted Q

 Create a node with sum of the chosen units, successors are chosen (esp, f(n1)+f(n2)) units

 Insert new node into queue Q

 Stop

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6453

Note, evaluate from root to leaf node (left child 1, right child 0)

Output results

Stop

C. Shannon-Fano Algorithm

Shannon-Fano Coding is one of the lossless compression techniques that was discovered by Claude Shannon and

Robert Fano in 1949. This technique is for constructing the prefix code base on symbols and probability. In other

words, it can be said to be an algorithm used to compress strings [9, 11, 13].

Shannon-Fano coding is similar to Huffman coding, but differs in the way the binary tree of symbol nodes are built.

The algorithm for Shannon-Fano is depicted below;

Start

Count characters of source file (Sf)

Sort Sf to non-decreasing order

Ag (Split (Sf))

Print (count of symbols, encoded tree)

Stop

Procedure Ag (Split (Sf))

Start

If (|Sf| > 1) then

Start

Divide Sf to Sf1 and Sf2

Add 0 to codes in Sf2

Add 1 to codes in Sf1

Ag (Split (Sf1))

Ag (Split (Sf2))

Stop

Stop

D. Performance Measurement

Compression algorithm performance mostly lies in the redundancy in the source file. The following are factors or

metrics used to assess the performance of algorithms.

1. Compression Size (CS), is the size of the new file after compression is completed. In other words, the compressed
file size.

2. Compression Ratio (CR), is the ratio of compressed file size and the original file. This is given by;

CR=
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑆𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑆𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) , in percentage wise, CR=

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑆𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑆𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) x

100.

3. Compression Time (CT), is the time taken for the compression to complete in milliseconds. The execution time in

milliseconds is divided by the number of characters in the original file. The results will be the time taken to

compress each character or bit in the original file. Compression Time can also be called, Speed of Execution

IV. RESULTS AND DISCUSSION

In this section, three lossless data compression algorithms are tested on ten (10) files of different types and sizes, as
well as content. Among these files are seven (7) text files and the other three (3) are Visual Basic program files.
The tables below show the test performed on the files with the Run-Length Encoding (RLE), Huffman Coding, and the

Shannon-Fano Coding.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6454

TABLE I
RUN-LENGTH ENCODING (RLE)

No. File Name File Size(bytes) Compressed Size

(bytes)

Compression Ratio

(%)

Compression Time

(ms)

1 Txt File 1 12883256 12127483 94.13368 530

2 Txt File 2 373874 371216 99.28906 15

3 Txt File 3 18757175 18704914 99.72138 1070

4 Txt File 4 611682 600720 98.20789 35

5 Txt File 5 28081207 28070493 99.96185 1615

6 Txt File 6 2689240 2637663 98.0821 156

7 Txt File 7 559 560 100.1789 1

8 Vb File 1 34627 28975 83.67747 1

9 Vb File 2 8993 7424 82.5531 1

10 Vb File 3 15940 12922 81.0665 1

TABLE II
HUFFMAN CODING ALGORITHM

No. File Name File Size(bytes) Compressed Size

(bytes)

Compression Ratio

(%)

Compression Time

(ms)

1 Txt File 1 12883256 6756616 52.44494 3135

2 Txt File 2 373874 222137 59.41494 100

3 Txt File 3 18757175 9514989 50.7272 4903

4 Txt File 4 611682 331355 54.17112 180

5 Txt File 5 28081207 14236923 50.69911 7296

6 Txt File 6 2689240 1473616 54.79675 688

7 Txt File 7 559 279 49.91055 5

8 Vb File 1 34627 20362 58.80383 16

9 Vb File 2 8993 5307 59.01257 5

10 Vb File 3 15940 9109 57.14555 8

TABLE III
SHANNON-FANO ALGORITHM

No. File Name File Size(bytes) Compressed Size

(bytes)

Compression Ratio

(%)

Compression Time

(ms)

1 Txt File 1 12883256 6794410 52.7383 3155

2 Txt File 2 373874 223534 59.78859 105

3 Txt File 3 18757175 9787621 52.18068 4741

4 Txt File 4 611682 335718 54.8844 165

5 Txt File 5 28081207 14666024 52.22718 7141

6 Txt File 6 2689240 1490946 55.44117 672

7 Txt File 7 559 287 51.34168 5

8 Vb File 1 34627 20601 59.49404 16

9 Vb File 2 8993 5416 60.22462 5

10 Vb File 3 15940 9232 57.91719 8

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6455

A. Results Analysis
Three lossless data compression algorithms are tested on ten (10) different types of files (with different size and
content). The outcome of the test is analysed comparatively based on three key metrics or factors including comparison
based on compression size, ratio (CR), and time (CT).

TABLE IV

COMPARISON BASED ON COMPRESSED FILE SIZE

Original File Size Compressed File Size

No. File Name File Size (bytes) Run-Length

Encoding(bytes)

Huffman

Coding(bytes)

Shannon-Fano

(bytes)

1 Txt File 1 12883256 12127483 6756616 6794410

2 Txt File 2 373874 371216 222137 223534

3 Txt File 3 18757175 18704914 9514989 9787621

4 Txt File 4 611682 600720 331355 335718

5 Txt File 5 28081207 28070493 14236923 14666024

6 Txt File 6 2689240 2637663 1473616 1490946

7 Txt File 7 559 560 279 287

8 Vb File 1 34627 28975 20362 20601

9 Vb File 2 8993 7424 5307 5416

10 Vb File 3 15940 12922 9109 9232

TABLE V

COMPARISON BASED ON COMPRESSION RATIO

Original File Size Compression Ratio

No. File Name File Size (bytes) Run-Length Encoding

(%)

Huffman Coding

(%)

Shannon-Fano

(%)

1 Txt File 1 12883256 94.13368 52.44494 52.7383

2 Txt File 2 373874 99.28906 59.41494 59.78859

3 Txt File 3 18757175 99.72138 50.7272 52.18068

4 Txt File 4 611682 98.20789 54.17112 54.8844

5 Txt File 5 28081207 99.96185 50.69911 52.22718

6 Txt File 6 2689240 98.0821 54.79675 55.44117

7 Txt File 7 559 100.1789 49.91055 51.34168

8 Vb File 1 34627 83.67747 58.80383 59.49404

9 Vb File 2 8993 82.5531 59.01257 60.22462

10 Vb File 3 15940 81.0665 57.14555 57.91719

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6456

TABLE VI

COMPARISON BASED ON COMPRESSED TIME

Original File Size Compression Time(ms)

No. File Name File Size

(bytes)

Run-Length Encoding

(ms)

Huffman Coding

(ms)

Shannon-Fano

(ms)

1 Txt File 1 12883256 530 3135 3155

2 Txt File 2 373874 15 100 105

3 Txt File 3 18757175 1070 4903 4741

4 Txt File 4 611682 35 180 165

5 Txt File 5 28081207 1615 7296 7141

6 Txt File 6 2689240 156 688 672

7 Txt File 7 559 1 5 5

8 Vb File 1 34627 1 16 16

9 Vb File 2 8993 1 5 5

10 Vb File 3 15940 1 8 8

Fig. 1 Compressed File Size

Fig. 2 Compression Time

1 2 3 4 5 6 7 8 9 10

RLE 530 15 1070 35 1615 156 1 1 1 1

Huffman 3135 100 4903 180 7296 688 5 16 5 8

Shannon-Fano 3155 105 4741 165 7141 672 5 16 5 8

0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

m
p

re
ss

io
n

 T
im

e
 (

m
s)

Comparison Based on Compressed Time

0

5000000

10000000

15000000

20000000

25000000

30000000

1 2 3 4 5 6 7 8 9 10

F
il

e
 S

iz
e

 (
b

y
te

s)

Comparison Based on Compressed File Size

File Size (bytes)

RLE

Huffman

Shannon-Fano

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6457

B. Discussion

The performance of the algorithms was analysed base on the compression size, the compression ratio and lastly, the

compression time (speed of execution).

In Table IV; Run-Length Encoding does not perform better in terms of compression size. The compressed size of file

number 7 is even bigger than that of the original size. In terms of compression size, Huffman Coding does better,

followed by Shannon-Fano algorithm and lastly, the Run-Length Encoding (RLE) algorithm. In terms of Compression

ratio percentage, Huffman Coding performs better, in the range of 49% to 60%, and the least performing is the Run-

Length Encoding of 81% to 101%.

Finally, the Huffman Coding again performs better than the rest in terms of Compression or execution time.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

The lossless data compression schemes evaluated all performs better in their own terms based on the metrics of

compression size, ratio, and time of execution used, but in specific terms, the Huffman’s compression scheme

outperformed all the algorithms.

Notice that, the content of the document and type of document also influences the metrics aside the robustness or

efficiency of the algorithms and hence the variations in some of the metrics.

Finally, the Huffman algorithm performs better than the Shannon-Fano Algorithm, followed by the Run-Length

Encoding (RLE) algorithm.

B. Extension for Future Work/Research

In this research, the performance of three (3) lossless compression algorithms including the Run-Length Encoding

(RLE), Huffman Coding and Shannon-Fano Coding were evaluated. They were tested on some selected text files of

varying size and content.
In future, large number of algorithms can be implemented for larger data types including audio, video and image data

types. An application can also be developed to detect the type of file and compress with the efficient appropriate

compression method.

Furthermore, Redundant Residue Number System (RRSN) as an error detection and correction mechanism can be

applied to these algorithms to deal with errors that may occur during the compression process.

REFERENCES

[1] Anshul, A. R., Ravi, A. R., and Pooja, R. (2019). Comparative Study of Data Compression Techniques.
International Journal of Computer Applications (0975 – 8887) Volume 178 – No. 28.

[2] Barath, C. K., Varun, M. K. and Gayathri, T. (2013). Technique of Data Analysis and File Compression using
Huffman Algorithm. International Journal of Advanced Research in Computer Science and Software

Engineering, Vol.3 Issue 11, Pg346-348.
[3] Engineering and Technology History Wiki (2014). History of Lossless Data Compression Algorithms. Retrieved

from www.ethw.org/History_of_Lossless_Data_Compression_Algorithms.

[4] Apoorv, V. S. and Garima, S. (2012).A Survey on Different Compression Techniques. International Journal of

Science and Research (IJSR)
[5] Pannirselvam, S. andSelvanayagi, D. (2015). A Comparative Analysis on Different Techniques in Text

Compression, International Journal of Innovative Technology and Creative Engineering, Vol.5 No.8, Pg283-287.
[6] Kodituwakku, S. R. and Amarasinghe,U. S. (2010). Comparison of Lossless Data Compression Algorithms for

Text Data.Indian Journal of Computer Science and Engineering, Vol. 1 (4), Pg416 – 425.
[7] Mohammad, H. (2012). A Survey of Data Compression Algorithms and their Applications. Network Systems Lab,

School of Computing Science, Simon Fraser University, BC, Canada.

[8] Mohammed, A. and Ibrahim, M. M. E. (2007). Comparative Study between Various Algorithms of Data
Compression Techniques. International Journal of Computer Science and Network Security, Vol.7 (4), Pg281-
291.

[9] Seema, A., and Priyanka, A. (2017). Comparative Study on Lossless Data Compression Techniques.International

Journal of Scientific Research and Management (IJSRM), Vol.5, Issue 8, Pg6630-6637.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007001|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6458

[10] Senthil, S. and Robert, L. (2011). A Comparative Study of Text Compression Algorithms. International Journal

of Wisdom Based Computing, Vol. 1, No.3, Pg68-76.
[11] Alhassan, A-B.,Gbolagade, K. A., and Bankas, E. K. (2015). A Novel and Efficient LZW-RNS Scheme for

Enhanced Information Compression and Security. International Journal of Advanced Research in Computer

Engineering and Technology. Volume 4(11). Pg1450-4019.
[12] Alhassan, A-B.,Ibrahim, S., and Agbedemnab, P.(2015). The Huffman’s Method of Secured Data Encoding and

Error Correction using Residue Number System (RNS). Communications on Applied Electronics. Volume 2(9).
Pg14-18.

[13] Alhassan, A-B.,Bankas, E. K., and Agbedemnab, P. A. (2017). Computer Arithmetic Aided Lempel-Ziv-Welch’s
Algorithm using the Moduli Set for Fast and Secured Transmission of Data via Network
Communication Channels. American International Journal of Research in Science, Technology, Engineering &

Mathematics. Volume 19(1). Pg62-68.

http://www.ijircce.com/

8.165

