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ABSTRACT: Many of the researchers in their studies have given their unique ways to predict the model behavior for a 

specific dataset in order to identify the defective modules and faulty modules in a class and to improve the quality of 

the software. The main aim of this paper is to give an overview of some of the papers and summarize their work so that 

the researchers may find it easy for them to identify and evaluate the current work that has been in trend today. The 

study includes the survey of year 2015 and 2016. This will help the researchers to channelize their work in a specific 

direction.   

 
KEYWORDS – defect prediction; object oriented metrics; performance measures; classifier or learner or machine 

learning algorithms; software quality 

 
I. INTRODUCTION 

 
Many of the studies are being done to predict the model behavior for a specific dataset in order to identify the defective 

modules and faulty modules in a class. These studies are carried out so that the researchers can identify the faults in a 

class so as to make the software of best quality to their extent. Many of the researchers have given their unique ways to 

improve the quality of the software. In all these studies, all of them have used classifiers to identify the faulty modules 

with the help of software metrics in their respective studies. Some of the researchers used NASA datasets [9] while 

some of them chose other open source datasets. The main aim of this paper is to give an overview to some of the papers 

and summarize their work so that the researchers may find it easy for them to identify and evaluate the current work 

that has been in trend today. The study includes the survey of year 2015 and 2016. This will help the researchers to 

channelize their work in a specific direction.   

 

Below here we are going to discuss some of the terminology so that the researcher or the readers find it easy to 

understand it in a better way: 

A. Defect prediction: Any kind of flaw or imperfection in a software product or process is known as defects, and 

the defect prediction is just a technique by which one can identify the defects. 

 

B. Software Metrics: It is a quantitative estimation of a degree to which a system or a process has a given trait or 

a property. The main aim of this metrics is to identify and control those parameters which affect the software 

development. 

 

C. Classifier: These are the models which help the researchers to identify whether the software has a defect or 

not. These are the algorithms which take data as an input and process the data and give the output in the form of 

number of defects. The classifiers are also termed as learners. 

 

 

 

 

 

http://www.ijircce.com/


    

                      ISSN(Online): 2320-9801 

       ISSN (Print):  2320-9798                                                                                                                                 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijircce.com 

Vol. 5, Issue 6, June 2017  

Copyright to IJIRCCE                                                             DOI: 10.15680/IJIRCCE.2017. 0506046                                         11802      

   

II. RELATED WORK 

 

In [1], the author improved the performance of the web applications by using metrics generated from the CSS source 

code. The datasets are generated from the open source web applications. And then, defect prediction is performed using 

3 different machine learning algorithms. 

In [2], the author proposed a methodology on the basis of log transformation to improve the quality of metrics. The 

effect of log transformation was analyzed on software metrics to identify fault-prone areas on multi-releases of 11 

products (41 releases). The outcomes demonstrated that the log transformation can be utilized to determine threshold 

values for all metrics. The outcomes can then used to lead fault-proneness classification on the basis of threshold values 

and look at against the outcomes without change.  

In [3], author performed a methodical survey studies about from January 1991 to October 2013 that utilizes machine 

learning algorithms for software fault prediction. We survey the execution capability of various machine learning 

algorithms in existing research for fault prediction. Author likewise thought about the execution of the machine 

learning algorithms with the statistical and other machine learning algorithms. At last, the strengths and weaknesses of 

machine learning techniques are also summarized.  

In [4], the author analyses and compares the statistical and machine learning methods for fault prediction. With a 

specific end goal to analyze and look at the models predicted utilizing the regression and the machine learning 

strategies they have utilized two openly accessible datasets AR1 and AR6. They have analyzed the predictive capacity 

of the models utilizing the Area Under the Curve (AUC).  

In [5], the author has twofold objectives: (1) investigation of the exertion expected to settle software shortcomings and 

influenced by different components or factors and (2) forecast of the level of implementation exertion for settling the 

fault on the basis of information given in software change demands. The work is based on data related to 1200 failures, 

extracted from NASA system. The investigation included descriptive and inferential insights.  

In [6], the author aims to evaluate a relationship between software metrics and software quality in an open-source 

software projects, and to compare these metrics to other metrics of source code and process. The author performed 

inferential statistics on open source software projects in order to analyze code ownership metrics and their relationship 

with software quality. 

 

III. LITERATURE SURVEY 

 

Ruchika Malhotra [7] has demonstrated an empirical framework for android software’s defect prediction utilizing 

various machine learning methods. The paper uses object oriented metrics for predicting defective classes using 

machine learning technologies. The datasets were obtained from Google Git repository [8] which are the seven 

application packages of android software, viz. Contact, MMS, Bluetooth, email, calendar, gallery2 and telephony as 

shown in Table [1]. The results are validated using 10-fold cross validation and inter-release validation methods. Later, 

statistical test and post-hoc analysis was performed to evaluate the reliability and significance of the results. Calculation 

of object oriented metrics was done using CKJM tool [9]. The performance measures used for defect prediction on 7 

application packages using machine learning technologies are Sensitivity, specificity, area under curve (AUC) utilizing 

Receiver operating character (ROC). Then the defect prediction performance was compared between 10-fold and inter-

release validation where, inter-release validation gave the better result than 10-fold validation. After that, the best and 

the worst machine learning technique was found using Friedman test which gave ranking to all the machine learning 

techniques on the basis of Average AUC values. At last, pair of machine learning techniques was found out which were 

statistically different from each other by performing post-hoc analysis using nemenyi test.  

In conclusion, author concludes that the defect prediction, models are efficient and effective, and the author proposes to 

perform the same work using meta heuristic techniques and hybridized algorithms. 

Arvinder Kaur and Inderpreet Kaur [10] showed the empirical evaluation of the six classifier algorithms for fault 

prediction in an open-source software projects. The aim was to compare the classification models for the fault 

prediction on an open source projects on the basis of Accuracy, Sensitivity, Specificity, Precision, F-measure, G-mean 

and J-coefficient. Graphical methods were also used like ROC, Precision-Recall Curve, Cost Curve and Lift charts. It 

was also aimed to compare the results of an open source software projects with the industrial projects.  Dataset was 

collected from the open-source website SOURCEFORGE [11] as shown in Table [2]. To calculate the values of object 

oriented metrics CKJM Extended Tool was used. Bugs are collected from the source code using openly available Bug 
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Tracker from SOURCEFORGE. Classification algorithms used in this study are Naïve Bayes, Logistic Regression, 

IB1, J48, Bagging and Random Forest. On the conclusion it has been found that Random Forest gave the best results 

followed by Bagging. Naïve Bayes gave the least performance. It has also been found that studies on industrial datasets 

and these datasets produced almost similar results. And hence, the study would help to increase the statistical validity 

for future studies. 

Read Shatnawi [12] has filtered out the less complex parts of the software and the remaining part was used for further 

analysis. The paper aims to reduce the implementation size and the design size, for which modules at 10%, 20%, and 

30 % of less complex LOC and less complex NPM respectively was filtered out of trained and tested datasets The 

remaining modules are build four classifiers viz. Naïve Bayes, Logistic Regression, k-nearest neighbor, and C4.5  

decision tree. Dataset is shown in Table [3]. Fault fixes and software metric values were gathered from the archives of 

the software projects [13]. The data is composed of source code, change history, and defects data. Datasets were 

formed by utilizing three tools, infusion tool for converting Java code to FAMIX models; Moose tool for reading 

FAMIX models and for calculating the number of source code metrics; and Churrasco tool for extracting bug data and 

for linking the modules [13]. Faulty data was gathered by studying the code subversions or CVS. The bug fixes are 

mapped to the affected parts of the system. ROC curves were used to analyze the result of the classifiers. 

In conclusion, the author says that the smaller modules can be removed without degrading the performance of the 

classifiers. The software engineers can spend less effort and can direct their efforts to the most vital parts of software. 

In future, the researcher plan to expand this study to more diverse datasets. 

Ahmed H. Yousef [14] has utilized the data mining way to present the attributes that foresee the faulty state of the 

modules. The paper has collected the data from the NASA REPOSITORIES [15] viz. CM1, JM1, KC1, KC2 and PC1. 

It uses 4 data mining algorithms viz. Naïve Bayes, Neural Network, Decision Tree and Association Rules. On running 

these algorithms using the above datasets, the paper gives top-20 attributes in ascending order of their defective state, 

of each algorithm separately. Then the performance of each classifier algorithm was compared on the basis of accuracy, 

precision, recall and f-measure. At last, the combined effect of all 4 classifiers was evaluated using Weighted Voting 

algorithm.  

In conclusion, weighted voting algorithm produced much better results as compared to individual algorithms. Naïve 

Bayes gave the best result individually. In future, the author wants researchers to replicate the work with new software 

projects and validate the results. 

 

Huanjing Wang, Taghi M. Khoshgoftaar and Amri Napolitano [16] utilized thirty wrapper-based feature selection 

methodologies to evacuate redundant software metrics utilized for better defect predictions. In this paper, these thirty 

wrappers depended on the search methods utilized (Best First or Greedy Stepwise), learners (NB, SVM, and LR), and 

performance measurements utilized (Overall Accuracy, Area Under ROC  Curve, Area Under the PR Curve, Best 

Geometric Mean, and Best Arithmetic Mean) in the evaluation of defect prediction. The outcomes show that Best 

Arithmetic Mean gave the best result inside the wrapper. Naïve Bayes performed significantly better than Logistic 

Regression and Support Vector Machine as a wrapper learner on slightly and less imbalanced datasets. On the other 

hand the models built with full datasets, the performances of models can be enhanced when metric subsets are chosen 

through a wrapper subset selector. The metric values and faulty data for this study were collected from a real world 

software project viz. the Eclipse project [17]. We took three releases of the Eclipse system viz. 2.0, 2.1, and 3.0.  
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Data set name Version Total classes Total LOC Defective # Defective % 

Gallery2 4.0.2 305 18,853 24 7.86 

 
4.0.4 310 19,290 69 22.25 

 
4.1.2 330 20,446 170 51.51 

 
4.2.2 374 28,223 93 24.86 

 
4.3.1 647 50,168 130 20.09 

Contact 2.3.7 85 7788 29 34.11 

 
4.0.2 325 22,722 19 5.84 

 
4.0.4 331 22,834 107 32.32 

 
4.1.2 357 24,644 35 9.8 

 
4.2.2 375 25,860 14 3.73 

 
4.3.1 210 14,807 98 46.66 

Email 2.3.2 385 25,760 21 5.45 

 
2.3.7 394 26,839 41 10.41 

 
4.0.2 469 33,730 17 3.62 

 
4.0.4 624 43,147 274 43.91 

 
4.1.2 475 34,255 61 12.84 

 
4.2.2 472 34,025 7 1.48 

 
4.3.1 472 34,037 77 16.31 

MMS 2.3.7 195 13,157 54 27.69 

 
4.0.2 201 13,538 11 5.47 

 
4.0.4 206 13,804 68 33.01 

 
4.1.2 223 14,759 42 18.83 

 
4.2.2 225 14,932 12 5.33 

 
4.3.1 224 14,915 23 10.27 

Calendar 4.0.2 77 8042 22 28.57 

 
4.0.4 78 8216 45 57.69 

 
4.1.2 86 9285 12 13.95 

 
4.2.2 88 9465 41 46.59 

Bluetooth 4.1.2 39 2517 15 38.46 

 
4.2.2 63 6246 10 15.87 

 
4.3.1 72 7550 13 18.05 

Telephony 4.2.2 249 30,325 137 55.02 

 
4.3.1 224 28,331 154 68.75 

 

Table 1: Summary of various releases of Android Software over application packages 

Author transformed the original data by (1) removing all non-numeric attributes, including the package names (2) 

changing the after-release defects attribute into binary form viz. fault-prone (fp) and non fault-prone (nfp). Participation 

in each class was decided by after-release defects threshold t, which isolates fault-prone from non fault-prone packages 

by classifying packages with t or more after-release defects as fp and remaining as nfp. They used t (10; 5; 3) for 

release 2.0 and 3.0, while t (5; 4; 2) for release 2.1. Table [4] presents details about the datasets used in this study.  

On conclusion, the comparison is shown between the performances of two search methods used within wrapper. GS 

performed better than BF in most cases. In terms of wrapper metrics performance measures, BAM is the best wrapper 

metric on average. Among the three learners used inside wrapper-based feature selection algorithm, NB was the best 

learner. Among the three external learners, the performance of SVM was the best, while NB performed worst.  

In future, the experiment may include using more learners, other feature subset method and some more metrics. 
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Project 
Total 

classes 

Faulty 

classes 
Faulty % Description 

PMD 104 60 57.7 Programming Mistake Detector PMD 

FIND BUGS 226 89 39.4 It looks for bugs in Java code 

EMMA 104 61 58.65 Used for measuring and reporting java code coverage 

TROVE 250 10 4 Provides a free implementation for java collection API 

Dr JAVA 405 81 20 It is a programming environment for java  

 

Table 2: Project Descriptions 

 
Dataset #Modules %NFP %FP 

Eclipse JDT Core 997 14% 86% 
www.eclipse.org/jdt/core 

   
Equinox Framework 324 40% 60% 

www.eclipse.org/equinox/  

   
 Mylyn 1862 13% 87% 
www.eclipse.org/mylyn/  

   
Eclipse PDE UI 1497 21% 79% 

www.eclipse.org/pde/pde-ui/ 

   
Apache Lucene 691 9% 91% 

www.lucene.apache.org  

 
  

 
 

Table 3: The fault distributions of all systems 

 
Ruchika Malhotra and Ankita Jain Bansal [18] built the predictive models to identify those parts of the software that have high 

probability of fault occurance in it. They have considered the impact of thresholds of software metrics on fault proneness for 

building the predictive models. In this research, author has utilized a statistical model gotten from logistic regression to compute the 

threshold values of software metrics. By utilizing the thresholds, one can partition the classes into two levels of hazard – generally 

low and high hazard. They have additionally demonstrated threshold impacts at different hazard levels and approved the utilization 

of these thresholds on an open domain. The most essential point of this paper is to think about the impact of thresholds of software 

metrics on fault proneness. Once the threshold values are calculated, one can compare them with the metric values for all the classes. 

The more the number of metrics in a class with values above their corresponding threshold values, the higher is the chances of faults 

in that class. To calculate the threshold values, they have used a methodology proposed in [19] based on logistic regression. The 

results showed that thresholds are quite effective and useful to indicate the high-risk classes. The empirical validation is done on 

software from NASA viz. KC1 [20] and other two openly available Promise datasets, Apache Ivy and JEdit. To demonstrate the 

effectiveness, inter-project validation has also been carried out on three open source datasets, Apache Ant and Apache Tomcat and 

Sakura. Inter-project validation means using different datasets for testing and training. Using training set different from test set may 

give better prediction results [21]. 

 

Project Data #Metrics #Modules %fp %nfp 

E1 

E2.0-10 208 377 6.1 93.9 

E2.1-5 208 434 7.83 92.17 

E3.0-10 208 661 6.2 93.8 

E2 

E2.0-5 208 377 13.79 86.21 

E2.1-4 208 434 11.52 88.48 

E3.0-5 208 661 14.83 85.17 

E3 

E2.0-3 208 377 26.79 73.21 

E2.1-2 208 434 28.8 71.2 

E3.0-3 208 661 23.75 76.25 

 
Table 4: Software Datasets Characteristics 

 
Authors have validated the threshold values of Ivy on Ant and Tomcat and the threshold values of JEdit on Sakura dataset. In other 

words, authors have performed interproject validation on the projects of similar nature. Ivy, Ant and Tomcat are apache software, all 

implemented in Java language, whereas JEdit and Sakura are test editors. The study has used various machine learning methods 

(BayesNet, NaïveBayes, random forest, support vector classifier and multilayer perceptron) in order to predict faulty classes. The 
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validation technique used for this purpose is K-cross validation, where the value of K is set to 10, and the performance is evaluated 

using receiver operating characteristics (ROC) curve [22]. Author have used various data sets from Promise data repository viz. KC1 

class level, Ivy, Tomcat, Ant, and JEdit which is collected and validated by the Metrics Data Program (MDP 2006) [23]. Besides 

these datasets, Sakura editor is also used as shown in Table [5]. Sakura is available under the GNU General Public License 2.0, 

whereas Sakura is also available under Shareware license. Authors calculated the threshold values of metrics using logistic 

regression. Thresholds are calculated for KC1, Ivy and JEdit datasets at different risk levels between 0.01to 0.15, and results are 

compared to conclude that one of the risk level is the best one. Using the threshold values obtained at the best risk level, models are 

validated using various machine learning methods, viz. BayesNet, NaïveBayes, random forest, support vector classifier and 

multilayer perceptron. Aside from this, interproject validation is additionally completed utilizing three open source datasets, Apache 

Ant, Apache Tomcat and Sakura. 

 

Dataset Version Instances Faulty Instances 

KC1 Class-Level 145 60 

Ivy 2 352 40 

Ant 1.7 745 166 

Tomcat 6 858 77 

JEdit 4.3 492 10 

Sakura 2.0.2.0 80 47 

 

Table 5: Brief details of open source datasets used 

 

In conclusion: (1) Univariate logistic regression is conducted for KC1, Ivy and JEdit datasets to find the threshold value. (2) For 

KC1, the best risk level (i.e. positive values) is 0.15. For Ivy, the threshold values at the risk level 0.07 and higher are within the 

observation range of all the metrics. But the author selected the lowest value, viz. 0.07. For JEdit, the lowest risk level is 0.02. (3) 

Results of validation on KC1 concluded that support vector classifier is to be the best machine learning method. The results of 

support vector classifier showed high g-mean (69.59) and AUC (0.693). When the data is converted to binary using threshold values 

of KC1, the model showed higher g-mean (72.08) and AUC (0.739). Results of validation on Ivy dataset concluded that the binary 

models using random forest and multilayer perceptron have performed better than non-binary model. (4) Interproject validation 

carried was out of the threshold values of Ivy on Ant and Tomcat, whereas threshold values of JEdit on Sakura concluded that the 

proposed threshold methodology can be used on the similar type of projects. 

 

IV. COMPARISON TABLE 

 

S No. Author's Name 
Published 

in 
Dataset Used Objective/ Year of Publication 

1 Ruchika Malhotra  

Elsevier- 

Science 

Direct 

Table 1 Defect prediction in android software (2016) 

2 
Arvinder Kaur, Inderpreet 

Kaur 

Elsevier- 

Science 

Direct 

Table 2 Fault Prediction in open source software projects (2016) 

3 Raed Shatnawi 

 

Springer 

 

Table 3 Filtering of less complex parts of software (2016) 

4 Ahmed H. Yousef 

Elsevier- 

Science 

Direct 

CM1, JM1, 

KC1, KC2, 

PC1 

data mining approach for defect prediction (2015) 

5 

Huanjing Wang, Taghi M. 

Khoshgoftaar, Amri 

Napolitano 

World 

Scientific 
Table 4 

Wrapper based feature subset selection to remove more 

redundant software metrics used for building defect 

predictors (2015) 

6 
Ruchika Malhotra, Ankita 

Jain Bansal 

Expert 

Systems 
Table 5 

build predictive models to identify parts of software that 

have high probability of occurrence of faults (2015) 

 
Table 6: Tabular Representation of all Papers Considered in this survey 
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V. CONCLUSION AND FUTURE WORK 

 

This survey was done so that the researchers may find out the current researches that have been done and the researches 

that can be done in the future. This survey was based on improving the software quality using software metrics that are 

applied on various machine learning methods. In all the papers above, the authors have done different researches using 

different datasets and different machine learning algorithms. All aimed at improving the software quality by removing 

the defects or faults in the software. This gives the brief to the researchers about the current trend in the particular 

domain and also helps the researchers on how to channelize their work in the future so that the readers and the 

researchers may find some more innovation in this field.   
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