

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11801

Survey on Defect Prediction and its Effect on

Software Quality

Prabujeet Kaur, Dharmendra Lal Gupta

M.Tech Student, Dept of Computer Science, Kamla Nehru Institute of Technology, Sultanpur, UP, India

Associate Professor, Dept of Computer Science, Kamla Nehru Institute of Technology, Sultanpur, UP, India

ABSTRACT: Many of the researchers in their studies have given their unique ways to predict the model behavior for a

specific dataset in order to identify the defective modules and faulty modules in a class and to improve the quality of

the software. The main aim of this paper is to give an overview of some of the papers and summarize their work so that

the researchers may find it easy for them to identify and evaluate the current work that has been in trend today. The

study includes the survey of year 2015 and 2016. This will help the researchers to channelize their work in a specific

direction.

KEYWORDS – defect prediction; object oriented metrics; performance measures; classifier or learner or machine

learning algorithms; software quality

I. INTRODUCTION

Many of the studies are being done to predict the model behavior for a specific dataset in order to identify the defective

modules and faulty modules in a class. These studies are carried out so that the researchers can identify the faults in a

class so as to make the software of best quality to their extent. Many of the researchers have given their unique ways to

improve the quality of the software. In all these studies, all of them have used classifiers to identify the faulty modules

with the help of software metrics in their respective studies. Some of the researchers used NASA datasets [9] while

some of them chose other open source datasets. The main aim of this paper is to give an overview to some of the papers

and summarize their work so that the researchers may find it easy for them to identify and evaluate the current work

that has been in trend today. The study includes the survey of year 2015 and 2016. This will help the researchers to

channelize their work in a specific direction.

Below here we are going to discuss some of the terminology so that the researcher or the readers find it easy to

understand it in a better way:

A. Defect prediction: Any kind of flaw or imperfection in a software product or process is known as defects, and

the defect prediction is just a technique by which one can identify the defects.

B. Software Metrics: It is a quantitative estimation of a degree to which a system or a process has a given trait or

a property. The main aim of this metrics is to identify and control those parameters which affect the software

development.

C. Classifier: These are the models which help the researchers to identify whether the software has a defect or

not. These are the algorithms which take data as an input and process the data and give the output in the form of

number of defects. The classifiers are also termed as learners.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11802

II. RELATED WORK

In [1], the author improved the performance of the web applications by using metrics generated from the CSS source

code. The datasets are generated from the open source web applications. And then, defect prediction is performed using

3 different machine learning algorithms.

In [2], the author proposed a methodology on the basis of log transformation to improve the quality of metrics. The

effect of log transformation was analyzed on software metrics to identify fault-prone areas on multi-releases of 11

products (41 releases). The outcomes demonstrated that the log transformation can be utilized to determine threshold

values for all metrics. The outcomes can then used to lead fault-proneness classification on the basis of threshold values

and look at against the outcomes without change.

In [3], author performed a methodical survey studies about from January 1991 to October 2013 that utilizes machine

learning algorithms for software fault prediction. We survey the execution capability of various machine learning

algorithms in existing research for fault prediction. Author likewise thought about the execution of the machine

learning algorithms with the statistical and other machine learning algorithms. At last, the strengths and weaknesses of

machine learning techniques are also summarized.

In [4], the author analyses and compares the statistical and machine learning methods for fault prediction. With a

specific end goal to analyze and look at the models predicted utilizing the regression and the machine learning

strategies they have utilized two openly accessible datasets AR1 and AR6. They have analyzed the predictive capacity

of the models utilizing the Area Under the Curve (AUC).

In [5], the author has twofold objectives: (1) investigation of the exertion expected to settle software shortcomings and

influenced by different components or factors and (2) forecast of the level of implementation exertion for settling the

fault on the basis of information given in software change demands. The work is based on data related to 1200 failures,

extracted from NASA system. The investigation included descriptive and inferential insights.

In [6], the author aims to evaluate a relationship between software metrics and software quality in an open-source

software projects, and to compare these metrics to other metrics of source code and process. The author performed

inferential statistics on open source software projects in order to analyze code ownership metrics and their relationship

with software quality.

III. LITERATURE SURVEY

Ruchika Malhotra [7] has demonstrated an empirical framework for android software’s defect prediction utilizing

various machine learning methods. The paper uses object oriented metrics for predicting defective classes using

machine learning technologies. The datasets were obtained from Google Git repository [8] which are the seven

application packages of android software, viz. Contact, MMS, Bluetooth, email, calendar, gallery2 and telephony as

shown in Table [1]. The results are validated using 10-fold cross validation and inter-release validation methods. Later,

statistical test and post-hoc analysis was performed to evaluate the reliability and significance of the results. Calculation

of object oriented metrics was done using CKJM tool [9]. The performance measures used for defect prediction on 7

application packages using machine learning technologies are Sensitivity, specificity, area under curve (AUC) utilizing

Receiver operating character (ROC). Then the defect prediction performance was compared between 10-fold and inter-

release validation where, inter-release validation gave the better result than 10-fold validation. After that, the best and

the worst machine learning technique was found using Friedman test which gave ranking to all the machine learning

techniques on the basis of Average AUC values. At last, pair of machine learning techniques was found out which were

statistically different from each other by performing post-hoc analysis using nemenyi test.

In conclusion, author concludes that the defect prediction, models are efficient and effective, and the author proposes to

perform the same work using meta heuristic techniques and hybridized algorithms.

Arvinder Kaur and Inderpreet Kaur [10] showed the empirical evaluation of the six classifier algorithms for fault

prediction in an open-source software projects. The aim was to compare the classification models for the fault

prediction on an open source projects on the basis of Accuracy, Sensitivity, Specificity, Precision, F-measure, G-mean

and J-coefficient. Graphical methods were also used like ROC, Precision-Recall Curve, Cost Curve and Lift charts. It

was also aimed to compare the results of an open source software projects with the industrial projects. Dataset was

collected from the open-source website SOURCEFORGE [11] as shown in Table [2]. To calculate the values of object

oriented metrics CKJM Extended Tool was used. Bugs are collected from the source code using openly available Bug

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11803

Tracker from SOURCEFORGE. Classification algorithms used in this study are Naïve Bayes, Logistic Regression,

IB1, J48, Bagging and Random Forest. On the conclusion it has been found that Random Forest gave the best results

followed by Bagging. Naïve Bayes gave the least performance. It has also been found that studies on industrial datasets

and these datasets produced almost similar results. And hence, the study would help to increase the statistical validity

for future studies.

Read Shatnawi [12] has filtered out the less complex parts of the software and the remaining part was used for further

analysis. The paper aims to reduce the implementation size and the design size, for which modules at 10%, 20%, and

30 % of less complex LOC and less complex NPM respectively was filtered out of trained and tested datasets The

remaining modules are build four classifiers viz. Naïve Bayes, Logistic Regression, k-nearest neighbor, and C4.5

decision tree. Dataset is shown in Table [3]. Fault fixes and software metric values were gathered from the archives of

the software projects [13]. The data is composed of source code, change history, and defects data. Datasets were

formed by utilizing three tools, infusion tool for converting Java code to FAMIX models; Moose tool for reading

FAMIX models and for calculating the number of source code metrics; and Churrasco tool for extracting bug data and

for linking the modules [13]. Faulty data was gathered by studying the code subversions or CVS. The bug fixes are

mapped to the affected parts of the system. ROC curves were used to analyze the result of the classifiers.

In conclusion, the author says that the smaller modules can be removed without degrading the performance of the

classifiers. The software engineers can spend less effort and can direct their efforts to the most vital parts of software.

In future, the researcher plan to expand this study to more diverse datasets.

Ahmed H. Yousef [14] has utilized the data mining way to present the attributes that foresee the faulty state of the

modules. The paper has collected the data from the NASA REPOSITORIES [15] viz. CM1, JM1, KC1, KC2 and PC1.

It uses 4 data mining algorithms viz. Naïve Bayes, Neural Network, Decision Tree and Association Rules. On running

these algorithms using the above datasets, the paper gives top-20 attributes in ascending order of their defective state,

of each algorithm separately. Then the performance of each classifier algorithm was compared on the basis of accuracy,

precision, recall and f-measure. At last, the combined effect of all 4 classifiers was evaluated using Weighted Voting

algorithm.

In conclusion, weighted voting algorithm produced much better results as compared to individual algorithms. Naïve

Bayes gave the best result individually. In future, the author wants researchers to replicate the work with new software

projects and validate the results.

Huanjing Wang, Taghi M. Khoshgoftaar and Amri Napolitano [16] utilized thirty wrapper-based feature selection

methodologies to evacuate redundant software metrics utilized for better defect predictions. In this paper, these thirty

wrappers depended on the search methods utilized (Best First or Greedy Stepwise), learners (NB, SVM, and LR), and

performance measurements utilized (Overall Accuracy, Area Under ROC Curve, Area Under the PR Curve, Best

Geometric Mean, and Best Arithmetic Mean) in the evaluation of defect prediction. The outcomes show that Best

Arithmetic Mean gave the best result inside the wrapper. Naïve Bayes performed significantly better than Logistic

Regression and Support Vector Machine as a wrapper learner on slightly and less imbalanced datasets. On the other

hand the models built with full datasets, the performances of models can be enhanced when metric subsets are chosen

through a wrapper subset selector. The metric values and faulty data for this study were collected from a real world

software project viz. the Eclipse project [17]. We took three releases of the Eclipse system viz. 2.0, 2.1, and 3.0.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11804

Data set name Version Total classes Total LOC Defective # Defective %

Gallery2 4.0.2 305 18,853 24 7.86

4.0.4 310 19,290 69 22.25

4.1.2 330 20,446 170 51.51

4.2.2 374 28,223 93 24.86

4.3.1 647 50,168 130 20.09

Contact 2.3.7 85 7788 29 34.11

4.0.2 325 22,722 19 5.84

4.0.4 331 22,834 107 32.32

4.1.2 357 24,644 35 9.8

4.2.2 375 25,860 14 3.73

4.3.1 210 14,807 98 46.66

Email 2.3.2 385 25,760 21 5.45

2.3.7 394 26,839 41 10.41

4.0.2 469 33,730 17 3.62

4.0.4 624 43,147 274 43.91

4.1.2 475 34,255 61 12.84

4.2.2 472 34,025 7 1.48

4.3.1 472 34,037 77 16.31

MMS 2.3.7 195 13,157 54 27.69

4.0.2 201 13,538 11 5.47

4.0.4 206 13,804 68 33.01

4.1.2 223 14,759 42 18.83

4.2.2 225 14,932 12 5.33

4.3.1 224 14,915 23 10.27

Calendar 4.0.2 77 8042 22 28.57

4.0.4 78 8216 45 57.69

4.1.2 86 9285 12 13.95

4.2.2 88 9465 41 46.59

Bluetooth 4.1.2 39 2517 15 38.46

4.2.2 63 6246 10 15.87

4.3.1 72 7550 13 18.05

Telephony 4.2.2 249 30,325 137 55.02

4.3.1 224 28,331 154 68.75

Table 1: Summary of various releases of Android Software over application packages

Author transformed the original data by (1) removing all non-numeric attributes, including the package names (2)

changing the after-release defects attribute into binary form viz. fault-prone (fp) and non fault-prone (nfp). Participation

in each class was decided by after-release defects threshold t, which isolates fault-prone from non fault-prone packages

by classifying packages with t or more after-release defects as fp and remaining as nfp. They used t (10; 5; 3) for

release 2.0 and 3.0, while t (5; 4; 2) for release 2.1. Table [4] presents details about the datasets used in this study.

On conclusion, the comparison is shown between the performances of two search methods used within wrapper. GS

performed better than BF in most cases. In terms of wrapper metrics performance measures, BAM is the best wrapper

metric on average. Among the three learners used inside wrapper-based feature selection algorithm, NB was the best

learner. Among the three external learners, the performance of SVM was the best, while NB performed worst.

In future, the experiment may include using more learners, other feature subset method and some more metrics.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11805

Project
Total

classes

Faulty

classes
Faulty % Description

PMD 104 60 57.7 Programming Mistake Detector PMD

FIND BUGS 226 89 39.4 It looks for bugs in Java code

EMMA 104 61 58.65 Used for measuring and reporting java code coverage

TROVE 250 10 4 Provides a free implementation for java collection API

Dr JAVA 405 81 20 It is a programming environment for java

Table 2: Project Descriptions

Dataset #Modules %NFP %FP

Eclipse JDT Core 997 14% 86%
www.eclipse.org/jdt/core

Equinox Framework 324 40% 60%

www.eclipse.org/equinox/

 Mylyn 1862 13% 87%
www.eclipse.org/mylyn/

Eclipse PDE UI 1497 21% 79%

www.eclipse.org/pde/pde-ui/

Apache Lucene 691 9% 91%

www.lucene.apache.org

Table 3: The fault distributions of all systems

Ruchika Malhotra and Ankita Jain Bansal [18] built the predictive models to identify those parts of the software that have high

probability of fault occurance in it. They have considered the impact of thresholds of software metrics on fault proneness for

building the predictive models. In this research, author has utilized a statistical model gotten from logistic regression to compute the

threshold values of software metrics. By utilizing the thresholds, one can partition the classes into two levels of hazard – generally

low and high hazard. They have additionally demonstrated threshold impacts at different hazard levels and approved the utilization

of these thresholds on an open domain. The most essential point of this paper is to think about the impact of thresholds of software

metrics on fault proneness. Once the threshold values are calculated, one can compare them with the metric values for all the classes.

The more the number of metrics in a class with values above their corresponding threshold values, the higher is the chances of faults

in that class. To calculate the threshold values, they have used a methodology proposed in [19] based on logistic regression. The

results showed that thresholds are quite effective and useful to indicate the high-risk classes. The empirical validation is done on

software from NASA viz. KC1 [20] and other two openly available Promise datasets, Apache Ivy and JEdit. To demonstrate the

effectiveness, inter-project validation has also been carried out on three open source datasets, Apache Ant and Apache Tomcat and

Sakura. Inter-project validation means using different datasets for testing and training. Using training set different from test set may

give better prediction results [21].

Project Data #Metrics #Modules %fp %nfp

E1

E2.0-10 208 377 6.1 93.9

E2.1-5 208 434 7.83 92.17

E3.0-10 208 661 6.2 93.8

E2

E2.0-5 208 377 13.79 86.21

E2.1-4 208 434 11.52 88.48

E3.0-5 208 661 14.83 85.17

E3

E2.0-3 208 377 26.79 73.21

E2.1-2 208 434 28.8 71.2

E3.0-3 208 661 23.75 76.25

Table 4: Software Datasets Characteristics

Authors have validated the threshold values of Ivy on Ant and Tomcat and the threshold values of JEdit on Sakura dataset. In other

words, authors have performed interproject validation on the projects of similar nature. Ivy, Ant and Tomcat are apache software, all

implemented in Java language, whereas JEdit and Sakura are test editors. The study has used various machine learning methods

(BayesNet, NaïveBayes, random forest, support vector classifier and multilayer perceptron) in order to predict faulty classes. The

http://www.ijircce.com/
http://www.eclipse.org/jdt/core
http://www.eclipse.org/equinox/
http://www.eclipse.org/mylyn/
http://www.eclipse.org/pde/pde-ui/
http://www.lucene.apache.org/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11806

validation technique used for this purpose is K-cross validation, where the value of K is set to 10, and the performance is evaluated

using receiver operating characteristics (ROC) curve [22]. Author have used various data sets from Promise data repository viz. KC1

class level, Ivy, Tomcat, Ant, and JEdit which is collected and validated by the Metrics Data Program (MDP 2006) [23]. Besides

these datasets, Sakura editor is also used as shown in Table [5]. Sakura is available under the GNU General Public License 2.0,

whereas Sakura is also available under Shareware license. Authors calculated the threshold values of metrics using logistic

regression. Thresholds are calculated for KC1, Ivy and JEdit datasets at different risk levels between 0.01to 0.15, and results are

compared to conclude that one of the risk level is the best one. Using the threshold values obtained at the best risk level, models are

validated using various machine learning methods, viz. BayesNet, NaïveBayes, random forest, support vector classifier and

multilayer perceptron. Aside from this, interproject validation is additionally completed utilizing three open source datasets, Apache

Ant, Apache Tomcat and Sakura.

Dataset Version Instances Faulty Instances

KC1 Class-Level 145 60

Ivy 2 352 40

Ant 1.7 745 166

Tomcat 6 858 77

JEdit 4.3 492 10

Sakura 2.0.2.0 80 47

Table 5: Brief details of open source datasets used

In conclusion: (1) Univariate logistic regression is conducted for KC1, Ivy and JEdit datasets to find the threshold value. (2) For

KC1, the best risk level (i.e. positive values) is 0.15. For Ivy, the threshold values at the risk level 0.07 and higher are within the

observation range of all the metrics. But the author selected the lowest value, viz. 0.07. For JEdit, the lowest risk level is 0.02. (3)

Results of validation on KC1 concluded that support vector classifier is to be the best machine learning method. The results of

support vector classifier showed high g-mean (69.59) and AUC (0.693). When the data is converted to binary using threshold values

of KC1, the model showed higher g-mean (72.08) and AUC (0.739). Results of validation on Ivy dataset concluded that the binary

models using random forest and multilayer perceptron have performed better than non-binary model. (4) Interproject validation

carried was out of the threshold values of Ivy on Ant and Tomcat, whereas threshold values of JEdit on Sakura concluded that the

proposed threshold methodology can be used on the similar type of projects.

IV. COMPARISON TABLE

S No. Author's Name
Published

in
Dataset Used Objective/ Year of Publication

1 Ruchika Malhotra

Elsevier-

Science

Direct

Table 1 Defect prediction in android software (2016)

2
Arvinder Kaur, Inderpreet

Kaur

Elsevier-

Science

Direct

Table 2 Fault Prediction in open source software projects (2016)

3 Raed Shatnawi

Springer

Table 3 Filtering of less complex parts of software (2016)

4 Ahmed H. Yousef

Elsevier-

Science

Direct

CM1, JM1,

KC1, KC2,

PC1

data mining approach for defect prediction (2015)

5

Huanjing Wang, Taghi M.

Khoshgoftaar, Amri

Napolitano

World

Scientific
Table 4

Wrapper based feature subset selection to remove more

redundant software metrics used for building defect

predictors (2015)

6
Ruchika Malhotra, Ankita

Jain Bansal

Expert

Systems
Table 5

build predictive models to identify parts of software that

have high probability of occurrence of faults (2015)

Table 6: Tabular Representation of all Papers Considered in this survey

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11807

V. CONCLUSION AND FUTURE WORK

This survey was done so that the researchers may find out the current researches that have been done and the researches

that can be done in the future. This survey was based on improving the software quality using software metrics that are

applied on various machine learning methods. In all the papers above, the authors have done different researches using

different datasets and different machine learning algorithms. All aimed at improving the software quality by removing

the defects or faults in the software. This gives the brief to the researchers about the current trend in the particular

domain and also helps the researchers on how to channelize their work in the future so that the readers and the

researchers may find some more innovation in this field.

REFERENCES

1. M. Serdar Bicer, Banu Diri, “Defect Prediction for Cascading Style Sheets”, Elsevier- Science Direct, Applied Soft Computing, Volume 49,

Pages 1078-1084, December 2016.
2. Raed Shatnawi, “Deriving metrics thresholds using log transformation”, Journal of Software: Evolution and Process, DOI: 10.1002/smr.1702,

Volume 27, Pages 95–113, January 6, 2015.

3. Ruchika Malhotra, “A Systematic Review of Machine Learning Techniques for Software Fault Prediction”, Elsevier- Science Direct, Applied
Soft Computing, Volume 27, Pages 504-518, February 2015.

4. Ruchika Malhotra, “Comparative analysis of statistical and machine learning methods forpredicting faulty modules”, Elsevier- Science Direct,

Applied Soft Computing, Volume 21, Pages 286-297, August 2014.

5. Maggie Hamill , Katerina Goseva-Popstojanova, “Analyzing and predicting effort associated with finding and fixing software faults”, Elsevier-

Science Direct, Information and Software Technology, Volume 87, Pages 1–18, July 2017.

6. Matthieu Foucault, Cédric Teyton, David Lo, Xavier Blanc, Jean-Rémy Falleri, “On the usefulness of ownership metrics in open-source
software projects”, Elsevier- Science Direct, Information and Software Technology, Volume 64, Pages 102-112, August 2015.

7. Ruchika Malhotra, “An empirical framework for defect prediction using machine learning techniques with Android software”, Elsevier-

Science Direct, Applied Soft Computing Volume 49, Pages 1034-1050, December 2016.
8. URL: https://android.googlesource.com

9. URL: http://gromit.iiar.pwr.wroc.pl/pinf/ckjm/metric.html

10. Arvinder Kaur, Inderpreet Kaur, “An empirical evaluation of classification algorithms for fault prediction in open source projects”, Production
and Hosted by Elsevier- Science Direct, Journal of King Saud University- Computer and Information Sciences, 23 April 2016.

11. URL: https://sourceforge.net/

12. Raed Shatnawi, “Identifying and eliminating less complex instances from software fault data”, Springer, International Journal of System
Assurance Engineering and Management, 24 December 2016.

13. D’Ambros M, Lanza M, Robbes R (2010), “An extensive comparison of bug prediction approaches”, 7th IEEE working conference on mining

software repositories, In: Proceedings of MSR 2010, pages 31–41, 2010.
14. Ahmed H. Yousef, “Extracting software static defect models using data mining”, Production and Hosted by Elsevier- Science Direct, Ain

Shams University- Ain Shams Engineering Journal, Volume 6, pages 133–144, 2015.

15. URL: http://promise.site.uottawa.ca/SERepository/datasets-page.html
16. Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano, “An Empirical Investigation on Wrapper-Based Feature Selection for Predicting

Software Quality”, World Scientific Publishing Company , International Journal of Software Engineering and Knowledge Engineering, DOI:

10.1142/S0218194015400057, Vol. 25 No. 1, pages 93–114, 2015.
17. T. Zimmermann, R. Premraj and A. Zeller, “Predicting defects for eclipse”, Proceedings of the 29th International conference on Software

Engineering Workshops, Washington, DC, USA, pages 76–85, 2007.

18. Ruchika Malhotra, Ankita Jain Bansal, “Fault prediction considering threshold effects of object oriented metrics”, Expert Systems Article,
Wiley Publishing Ltd, Vol. 32, No. 2, April 2015.

19. Bender, R., “Quantitative risk assessment in epidemiological studies investigating threshold effects”, Biometrical Journal, Volume 41, Pages

305–319, 1999.
20. NASA. (2000) Metrics data repository, http://www.mdp.ivv.nasa.gov/

21. He, Z., F. Shu, Y. Yang, M. Li and Q. Wang, “An investigation on the feasibility of cross-project defect prediction”, Automated Software

Engineering, DOI: 10.1007/s10515-011-0090-3, Volume 19, Pages 167–199, 2012.
22. El Emam, K.S. Benlarbi, N. Goel and S. Rai, “A validation of object-oriented metrics”, Technical report ERB-1063, NRC, 1999.

23. URL: http://sarpresults.ivv.nasa.gov/ViewResearch/107.jsp)

BIOGRAPHY

Prabujeet Kaur is an M.tech Student in the Computer Science and Enginnering Department, Kamla Nehru Institute of

Technology, Sultanpur, UP, India. She received a B.Tech degree in 2012 from Shri Ram Murti Smarak Women’s

College of Engineering and Technology, UP Technical University, Bareilly, UP, India. Her research interests are

Cryptography and Network Security, Software Engineering, and Data Mining.

http://www.ijircce.com/
http://www.sciencedirect.com/science/journal/15684946/49/supp/C
http://www.sciencedirect.com/science/journal/15684946/27/supp/C
http://www.sciencedirect.com/science/journal/15684946/21/supp/C
http://www.sciencedirect.com/science/journal/09505849/87/supp/C
http://www.sciencedirect.com/science/journal/09505849/64/supp/C
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946/49/supp/C
https://android.googlesource.com/
http://gromit.iiar.pwr.wroc.pl/pinf/ckjm/metric.html
https://sourceforge.net/
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://www.mdp.ivv.nasa.gov/
http://sarpresults.ivv.nasa.gov/ViewResearch/107.jsp

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506046 11808

Dharmendra Lal Gupta is currently working as an Associate Professor in the Department of Computer Science &

Engineering, Kamla Nehru Institute of Technology, Sultanpur, UP, India. He received B.Tech. degree in 1999 from

Kamla Nehru Institute of Technology, Sultanpur, UP, in Computer Science & Engineering, M.Tech. Hon’s degree in

2003 in Digital Electronics and Systems from Kamla Nehru Institute of Technology, Sultanpur, UP, India. He has been

a member of IEEE Computer Society. He has published about 26 papers in International/National

Journals/workshops/conferences and seminars. His research interests are Software Quality Engineering, Software

Engineering, Cryptography & Network Security.

http://www.ijircce.com/

