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ABSTRACT: Optimization lies at the heart of machine learning, dictating how models learn from data. Two 

prominent optimization paradigms—Gradient Descent (GD) and Evolutionary Strategies (ES)—offer distinct 

approaches for adjusting model parameters to minimize loss functions. While gradient-based methods dominate deep 

learning due to their efficiency and scalability, evolutionary approaches are gaining attention for their robustness in 

non-differentiable, non-convex, and multimodal optimization landscapes. This paper presents a comparative analysis of 

GD and ES, focusing on their mathematical foundations, practical implementations, strengths, limitations, and 

performance across various machine learning tasks. A hybrid perspective is also explored, aiming to combine the best 

of both techniques. 
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I. INTRODUCTION 

 

In machine learning (ML), optimization is the process of adjusting model parameters to minimize a cost or loss 

function. It is essential in training algorithms ranging from linear regression to deep neural networks. Traditionally, 

Gradient Descent has been the go-to method due to its computational efficiency and strong theoretical backing. 

However, Evolutionary Strategies—a subset of evolutionary algorithms inspired by natural selection—are emerging 

as viable alternatives in scenarios where gradients are noisy, unavailable, or misleading. 

 

This paper investigates the fundamental principles of both approaches, highlights their use cases, and compares them 

through literature insights and experimental data. The goal is to guide researchers and practitioners in selecting the 

appropriate optimization method based on their problem landscape. 

 

II. LITERATURE REVIEW 

 

Optimization strategies in ML have evolved from purely analytical methods to heuristic and biologically inspired 

techniques. 

 

Author(s) Method Focus Key Findings 

Rumelhart et al. (1986) Backpropagation (GD) Demonstrated GD in training neural networks. 

Hansen & Ostermeier 

(2001) 

Evolution Strategies (CMA-

ES) 

Introduced covariance matrix adaptation, improving ES 

convergence. 

Bengio (2012) Gradient-based learning 
Identified limitations of GD in deep models with local 

minima. 

Salimans et al. (2017) Evolution Strategies 
Showed that ES could match or exceed GD in reinforcement 

learning. 

Loshchilov & Hutter 

(2017) 
SGD variants Proposed Adam and CMA-ES hybrid methods. 

 

These studies underscore that while GD is dominant in differentiable models, ES offers advantages in flexibility and 

robustness. 
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III. METHODOLOGY 

 

a. Theoretical Comparison 

We analyze the mathematical formulation of both methods: 

• Gradient Descent: Uses partial derivatives to move in the direction of steepest descent. 

θ=θ−η∇θL(θ)\theta = \theta - \eta \nabla_\theta L(\theta)θ=θ−η∇θL(θ)  
• Evolutionary Strategies: Employs population-based stochastic search. 

θt+1=θt+σ⋅N(0,I)\theta_{t+1} = \theta_t + \sigma \cdot N(0, I)θt+1=θt+σ⋅N(0,I)  

b. Implementation & Simulation 

• GD: Trained a neural network on MNIST using SGD and Adam. 

• ES: Trained the same model using OpenAI-style ES on the same dataset. 

 

c. Evaluation Metrics 

• Accuracy 

• Convergence speed 

• Computational cost 

• Sensitivity to hyperparameters 

 

TABLE 1: Comparison of Gradient Descent vs Evolutionary Strategies 

 

Feature Gradient Descent (GD) Evolutionary Strategies (ES) 

Requires gradient? Yes No 

Suitable for black-box? No Yes 

Parallelization Difficult Highly parallelizable 

Hyperparameter sensitivity High (learning rate, etc.) Moderate 

Escaping local minima Poor Good 

Computational cost Low per iteration High (requires population evaluation) 

Convergence speed Fast on convex functions Slower but global 

 

FIGURE 1: Optimization Pathways in a Non-Convex Loss Surface 
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Optimization Pathways in a Non-Convex Loss Surface 

In modern machine learning—particularly in deep learning—non-convex loss surfaces are the norm. These surfaces 

are complex and contain multiple local minima, saddle points, plateaus, and flat regions, making optimization 

challenging. 

 

Understanding how optimization pathways (i.e., the trajectory taken by an optimizer through the loss landscape) 

behave on such surfaces helps in selecting the right training strategies, optimizers, and hyperparameters. 

 

             What Is a Non-Convex Loss Surface? 

• A convex loss surface has a single global minimum. 

• A non-convex loss surface contains multiple local minima and saddle points. 

• Deep neural networks almost always have high-dimensional, non-convex loss surfaces due to their complex 

architectures. 

      Loss surface: A plot of the loss function’s value with respect to model parameters. 

 

      Key Features of Non-Convex Landscapes 

Feature Description 

Local Minima Multiple "valleys" in the surface where the loss is low but not necessarily minimal. 

Saddle Points Points where the gradient is zero, but the point is neither a minimum nor a maximum. 

Flat Regions Areas with little or no gradient, causing slow optimization progress. 

Sharp vs. Flat Minima Flat minima tend to generalize better; sharp minima may lead to overfitting. 

 

       Optimization Pathways: How Optimizers Navigate 

 

1. Gradient Descent (GD) 

• Follows the steepest descent direction. 

• Sensitive to learning rate; may get stuck in local minima or saddle points. 

• In high dimensions, more likely to pass through saddle points than get stuck in local minima. 

2. Stochastic Gradient Descent (SGD) 

• Adds randomness by computing gradients on mini-batches. 

• Helps escape shallow local minima or saddle points. 

• Pathways are noisier, often enabling better exploration of the landscape. 

3. Momentum-based Methods (e.g., SGD+Momentum, Nesterov) 

• Accumulate velocity to push through plateaus or narrow valleys. 

• Tend to follow smoother, more directed paths. 

• Can escape shallow local minima more efficiently than plain SGD. 

4. Adaptive Methods (e.g., Adam, RMSProp) 

• Adjust learning rates per parameter. 

• Faster convergence, but may converge to sharper or suboptimal minima. 

• Often follow shorter but less generalizable paths. 

 

     Pathways and Generalization 

• Flatter minima (broad valleys) correlate with better generalization. 

• Pathways that end in flat minima usually come from: 

o Lower learning rates 

o Proper regularization (e.g., dropout, weight decay) 

o Stochastic optimizers (e.g., SGD with momentum) 

      Key Insight: 

 

Optimizers with higher noise (like SGD) tend to find flat minima that generalize well, while adaptive optimizers 

may find sharp minima with poorer generalization. 

 

        Visualizing Optimization Pathways 

In 2D or low-dimensional projections of parameter space, we often observe: 
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• SGD: Zig-zagging, exploratory path 

• Adam: Direct, shorter path 

• Momentum: Smoother path with acceleration 

• Large learning rates: Path jumps across regions 

• Small learning rates: Follows narrow valley floor 

Techniques: 

• PCA of weight trajectory 

• Loss surface interpolation 

• Mode connectivity analysis 

 

      Techniques to Improve Pathways 

Technique Effect on Optimization Path 

Learning Rate Scheduling Helps escape plateaus and refine convergence 

Batch Normalization Smooths the surface; stabilizes training 

Gradient Clipping Prevents exploding gradients in sharp regions 

Regularization (L2, dropout) Encourages exploration of flat regions 

Warm Restarts / Cosine Annealing 
Encourages exploration and prevents early 

convergence 

Loss Landscape Smoothing (e.g., Sharpness-Aware Minimization - 

SAM) 
Encourages pathways through flat minima 

 

     Summary Table 

Optimizer Likely Path Shape Strength Weakness 

GD Smooth, steady descent Theoretically sound Gets stuck in saddle points 

SGD Noisy, exploratory Escapes bad local minima Slower convergence 

SGD + Momentum Directed, fast descent Escapes plateaus, faster path May overshoot minima 

Adam / RMSProp Fast, adaptive Fast convergence May generalize poorly 

SAM / Entropy-SGD Smoother, flat minima Better generalization Higher computational cost 

 

IV. CONCLUSION 

 

Both Gradient Descent and Evolutionary Strategies have unique advantages and limitations. GD excels in high-

dimensional, differentiable problems due to its efficiency and scalability. However, it is sensitive to hyperparameters 

and prone to local optima. ES, in contrast, offers robustness in non-differentiable or noisy settings and is more 

adaptable to parallel computing but at the cost of higher computation. 

 

A hybrid approach, leveraging the speed of GD with the global search capability of ES, holds promise for complex 

ML problems. Future research should explore such hybrids and develop adaptive systems that switch optimization 

strategies based on model performance. 
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