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ABSTRACT: Big data refers to data with the following characteristics- huge velocity, variety, veracity and volume. 

This data is dealt with in two ways – batch and stream processing. Apache Apex platform which runs on Hadoop Yarn, 

is used for big data processing which allows real time stream and batch processing. Fault tolerance is a very important 

feature needed while processing big data. Apache Apex uses the checkpointing mechanism to ensure fault tolerance. 

Checkpointing is a recovery process. RocksDB is the database proposed to support checkpointing. It is a library written 

in C++. It is an embedded key value data store. Keys and values are byte streams. It can store few terabytes of data on 

RAM or flash drives in local system. This paper is to propose a mechanism to reduce the latency and overcome other 

issues of checkpointing in Apache Apex. 
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I. INTRODUCTION 

 

  Big data processing systems have a lot of concepts. Operators, for example, are important elements of a big data 

system that directly affect data. Operators are primary blocks to build an Apache Apex [1] application. Operators which 

are Java classes and are used to accept input data, process it and send the output to the other operators. The state of an 

operator maintains the history of the operations which occurred in the past and it plays a role in determining the logic 

for future computations. 

In some scenarios an operator or an entire application fails due to reasons such as less resource availability, less 

memory capacity etc. Generally, the answer would be to restart the entire process from scratch. However this deals in 

loss of huge amounts of data already processed along with the results. It hampers resources like time and CPU capacity. 

This approach cannot even be considered in terms of dealing with big data as the losses would be substantial. Hence, 

the state must be kept in a reliable location to enable proper recovery.  This is termed as fault tolerance. Fault tolerance 

is a definite requirement. The Apache Apex [1] system is made fault tolerant by using checkpointing. In checkpointing, 

the snapshots of a process are stored periodically and retrieved in case of error or failure. Apex treats checkpointing as 

an inbuilt functionality. 

Apache Apex [1] stores the state of the operators in the local file system continuously. These states are periodically 

pushed into the HDFS. Once the state of an operator is pushed into HDFS, it is said to be checkpointed.  Hence if a 

process fails, Apache Apex system looks into HDFS, retrieves the most recent state and pushes this into the local file 

system from where the process restarts.   

II. RELATED WORK 

 

Hbase [2] and Cassandra [3] are based on Log Structured Merge Trees but converting them into an embedded 

library would take a lot of effort. Thus embedded databases such as BerkleyDB, KyotoDB, SQLite3, LevelDB [4] were 

better alternatives for implementing checkpointing. In this lot, LevelDB was the fastest. LevelDB however did not 

strike the perfect tradeoff between read, write and space amplification. Hence RocksDb was created. RocksDB inherits 

its structural framework from LevelDB. In order to make the Apex checkpointing efficient, a Hadoop based data store 

is developed called Hadoop Distributed Hash Table (HDHT). The programming model of HDHT [5] is based on key-

value stores applicable to various use cases. This embedded key-value store or hash table is based on HDFS. It is 
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assumed that the events that are being  processed  carry the key which will enable storage and retrieval of data from the 

database.  

Since HDHT is embedded and requires no installing/managing operations, it was chosen over the other key value 

stores which are compatible with streaming applications. Apex checkpointing when integrated with HDHT provides 

exactly once guarantee. Exactly once guarantee means tuples are guaranteed to be processed only once by all the 

operators in the application, even in the case of any failures [5]. HDHT was based on HDFS as HDFS could perform 

scalable reads and writes. The key and values are byte arrays, by default stored in an alphabetical order. In scenarios 

where the volume of incoming tuples is more than the operator can handle, resulting in high latencies and reduced 

throughput, the operators replicate themselves on different nodes so that the load is shared by all the replicas. These 

replicas can be called as the partitions of that operator and this process is called as partitioning. The HDHT file system 

shows this partitioning of the operator. Each partition uses a separate directory having its own WAL (Write Ahead Log) 

and metadata file. Each of these partitions has a bucketKey which is the name of the subdirectory . 

Supported file formats are Tfile - Hadoop file format, DTfile -written in Tfile format during HDHT lookup and 

reduces the disk I/Os and Hfile - written in Hbase format.  HDHT achieves high throughput, low latency and fault 

tolerant by writing the updates in a write ahead log and only a few data files by key design. The timestamp can be used 

as prefix by the key. At the end of every application window, the WAL is pushed to the HDFS. Operator is blocked until 

the WAL is persisted to the HDFS successfully. Only after the flushing is performed the operator resumes its processing 

of the incoming tuples again. Limitations of HDHT are that since it is based on HDFS, continuously accessing HDHT 

was costly and it showed unpredictable speed variation in tuples processing at every checkpoint. 

III. PROPOSED ALGORITHM 

 

A. Design Considerations: Apex operators are represented in a Directly Acyclic Graph (DAG). These operators store 

their processed data in RocksDB on their local file system A checkpoint is taken after every thirty seconds (default).  

 

Fig.1.Operators represented in a DAG [Taken from Datatorrent Console] 

B. Description of the Proposed Algorithm:  To overcome the issues given by Hadoop Distributed Hash Table (HDHT), 

another key value store was proposed as an alternative. Since accessing the HDFS to serialize the state of the 

operators was a costly option, RocksDB [6] which is an embedded key-value store was chosen. In this system, the 

operators which are processing streamline data were storing processed tuples in RocksDB on the local file system. 

RocksDB has three storage structures- Memtable (in-memory structure, mutable), Sorted String Tables/SST 

(secondary storage structure, immutable) and Write Ahead Log/WAL (in-memory structure, mutable). Once the 

memtable reached its threshold, data got flushed to the secondary storage structures i.e. SSTs. These SSTs are based 

on the Log merge Structured Trees [6]. This facilitates a compaction background task where SSTs are checked for 

duplicates and merged into one single SST. This makes RocksDB better in storage efficiency and access speed. In 

the previous system, the whole state of the operator was being pushed on to the HDFS at every checkpoint. This is 
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not necessary since the state changes from one checkpoint to the other were not that large. This gave way to the idea 

of incremental checkpointing where only the change in the state of the operator is checkpointed instead of the whole 

state. In the proposed system, an API created in Java called RockDBStore is used which consists of methods that 

perform incremental push and full recovery of state of Apex operator. This API interfaces RocksDB instance with 

HDFS.  The API maintains a hash map consisting of filename as the key and its timestamp as the corresponding 

value. A new file created by RocksDB is entered into the hash map with its timestamp and a modified file gets 

updated in the hash map with its new timestamp. Thus, a list of files which are newly generated along with the files 

that were modified is obtained which are eventually pushed onto the HDFS at checkpoint. After the event of a node 

failure, the Apex operator gets deployed on another node. It initializes a RocksDB instance on its local file system. 

The state of the operator before failing is retrieved from the HDFS and loaded into the RocskDB using the 

loadFromHDFS() method of the RockDBStore. The operator restarts its working from the state that was last 

checkpointed. 

 

IV. PSEUDO CODE 

Incremental checkpointing 

Step 1: Initialize a RocksDB instance on local file system of each operator node. 

Step 2:  Import RockDBStore API 

Step 3:  Create Hash Map to store file name and timestamp of files created by RocksDB. 

Step 4:  if (timestamp==null) 

                 File is new hence add it to the list of files to be pushed into HDFS. 

                 File is added as new entry in hash map. 

             else if (stored_timestamp<current_timestamp) 

                 File is modified hence added to list of files to be pushed into HDFS. 

                Timestamp is modified of the file in hash map. 

Step 5: At checkpoint, push the list of files onto HDFS. 

Step 6: Repeat steps 4, 5, 6 until operator fails or application is killed. 

Step 6: End.     

 

Retrieval of state of operator after failure of node 

Step 1: Operator/Application killed and deployed on another node. 

Step 2: Initialize RocksDB instance on local file system of the node. 

Step 3: Retrieve all files from HDFS into RocksDB. 

Step 4: Resume processing of operator. 

Step 5: End 

  

V. SIMULATION RESULTS 

 

In order to analyse and compare the performance of the existing HDHT system with the proposed RocksDB system, 

a benchmarking application was carried out. First, the apex operator system used the HDHT store to serialize its state 

until the state was pushed into the HDFS. The apex system then used the RocksDB store to keep its operator history 

and then pushed only the changed state into HDFS implementing incremental checkpointing. The resulting behaviour 

of these two systems is represented using the number of tuples processed by each store per second in the graphs below. 

Figure 2 and 3 show time in minutes (mm:ss format) on the X-axis and number of tuples being processed per second on 

the Y-axis. The graphs help us in the comparative study in the behaviour of the two stores. 

The optimal processing speed of HDHT was 49,342 tuples/second. This speed dropped to around 30,000-35,000 

tuples/second at every checkpoint (after every 30 seconds). HDHT took around 25-35 seconds to come up to its optimal 

tuple processing speed. Thus, we can say that HDHT showed some latency during the time when the state was being 

pushed from HDHT to the HDFS. The nature of the graph in figure 2 represents the unpredictable variation in the 

processing speed of HDHT. 
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Fig.2. HDHT performance (Time in minutes (mm:ss format) on the X-axis and number of tuples being processed per 

second on the Y-axis) 

 

On the other hand, incremental checkpointing using RocksDB had its optimal tuple processing speed as 58,376 

tuples/second. During checkpointing it dropped down to around 48,000 tuples/second. This performance shown by 

RocksDB is better than HDHT in terms of tuple processing. RocksDB then took 12-15 seconds to come up to its 

optimal speed which was almost half of the time taken by HDHT. 

 

 
Fig.3. RocksDB performance (Time in minutes (mm:ss format) on the X-axis and number of tuples being processed per 

second on the Y-axis) 

 

The simulation results thus prove that RocksDB is an efficient key value database to store the state of the Apex 

operators in the local file system. It resumes to its maximum speed of processing in much lesser time and is a better 

choice over the HDFS based store in terms of latency.  

VI. CONCLUSION AND FUTURE WORK 

 

The proposed system of incremental checkpointing using RocksDB showed substantial improvement in the system as 

compared to the system that uses complete state checkpointing. The results show that the process of storing only the 

delta of state of operators at every checkpoint made the mechanism more efficient in terms of processing speed of 

tuples and made the behavior of operators stable in nature. The scope of this proposed system is to develop an 

intelligent recovery system in place of the current full recovery system. In this intelligent recovery file system, a META 

file can be created which keeps a track of which files have been added at every checkpoint. This can help in retrieving 

only the SST files that were active at the time of operator failure instead of retrieving all the SST files. 
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