
 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11329 

 

Evaluation of Active Storage System Realized 

through MobilityRPC 
Naveenkumar J 

+
, Prof.Dr.S.D.Joshi

* 

+
Research Scholar, Dept. of Computer Engineering, BVDUCOEP, Pune, Maharashtra, India 

*
Professor, Dept. of Computer Engineering, BVDUCOEP, Pune, Maharashtra, India 

 
ABSTRACT: Recent meliorations in storage technology and emerging high performance computing and interconnects 

have facilitated to construct systems scaling new high processing power by connecting thousands of compute and 

storage nodes. However, large-scale simulations and computations using this kind of environment, postulating the 

ginormous and raising masses of data remain, still a challenging problem. It has been noted that, the cost of bandwidth 

for moving data between the processing nodes and the storage node has not been significantly improved at the same 

time as the disk capacity. Because of huge quantity of Data intensive applications & I/O Applications, the storage and 

transfer of data remains a serious bottleneck. This paper evaluates the offset cost of hosting the applications would be 

offset, by the effective (aggregate) overhead involved in driving the end-to-end data transfer between the array and the 

applications 

 

KEYWORDS: Storage Array, Active Storage, Application Offloading, Java, Mobility RPC 

I. INTRODUCTION 

The IT sector has been reinventing its business platform now and then. These reinvention and innovation changes 

are happening at much increased pace. The transformation of IT landscape has happened from first Platform to the third 

Platform.[1] The first platform was purely based on the mainframes and terminals, which were referred to as dawn of 

the computing era. The Second Platform was built on the foundation of the emergence of personal computers, servers, 

database systems and client-server models. With the advent of cloud, mobility, big data analytics and social networking 

the concept of third platform was emerged. The current trend in information technology embraces the terms like „Big 

Data‟, „Mobile Engineering‟, „Cloud Computing‟ and Social Networking Platform. All these terms refer to 

technologies, which have been used by a mass of end users.[2]–[4] 

To keep up with the innovation pace and sustain in the business, IT organizations are undergoing huge 

transformations. Applications have been developed which are capable of running on mobile platforms and accessing 

the remote compute and storage. As mentioned earlier, the scope of users and deployment model of application, the 

business model enables the need to migrate to the third platform. As the users scale-up, so the infrastructure and the 

data grow exponentially. There is an outbreak of data from multiple spectrums of devices that are required to be 

analysed and processed for extracting useful information.  

In order to meet performance demands, it is essential to optimize the processing and I/O subsystems. One promising 

approach to optimize performance is to use “active storage”. The advent of low latency, high bandwidth network 

architectures and embedded processing having enabled hard disks to function as active storage devices which is 

discussed in this paper. 

II. RELATED WORK 

Existing Storage system is an example of ad-hoc, proprietary based approach to realize a form of active storage, 

whereas, approach to embed a guest operating system is the other spectrum of Active Storage enabler. While, what is 

desirable is something like Hadoop ecosystem, which fits in as midway between these two, the Hadoop based 

ecosystem allows offloading of compute/data storage IO intensive IO tasks among the data servers in the Hadoop 

cluster.[5][6][7] 

Proper characterization of these models as enablers of active storage system is not available from the literature 

review. These approaches are developed and deployed on ad-hoc basis as and when needed. [8] 



 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11330 

 

Some storage industry commodities are proprietary intelligent storage system, which comprises the offloading of 

tasks near to the data. However, these offloading are not full-fledged and are ad-hoc in manner. Those storage 

components can be partitioned into three compartments like Database servers, Network fabrics and Storage servers also 

called storage cells. The more storage cells more will be the capacity and high bandwidth. The offloading process 

happens between the database servers and storage cell through iDB (intelligent database protocol). The iDB works as 

function conveyance to transparently represent the database operations to ExaData operations. It is also used for 

transferring data between database node and storage cell. iDB is implemented using LIBCELL and in turn, ExaData 

binaries are linked up with the LIBCELL to facilitate cell communication. The heart of the ExaData storage cell for 

providing the unique features and services is CELLSRV. The CELLSRV provides majority of services. Cell Offload 

significantly reduces the IO transfer over storage network, memory and CPU utilization database tier nodes. Since 

direct path read mechanism is implemented the buffer cache will not be saturated for large IO requests. [9][10][11][12], 

[13] 

DDN also emerged with its own storage fusion architecture (SFA) which was designed for multi-processor and multi 

core systems. The processors inside the storage were divided into application processor and RAID processors. The 

Application processors were dedicated to execute tightly coupled applications within the storage subsystem. With the 

help of virtualization tool the applications were brought into storage subsystem and the application processor were used 

to execute them. Operating system with the SFA acts as hypervisor to control processors/cores, memory, IO and virtual 

disk allocations. This also takes care of applications running in embedded space, hence cannot hinder block operations 

memory space and that the applications only utilize the processing and IO resources that have been coupled with. 

[14][5], [15], [16] 

 

III. PROPOSED REALIZED ACTIVE STORAGE TESTBED 

A. Testbed Considerations: 

The evaluation is conceded over two altered set of setups with two different Testbeds and evaluating the 

performance of two frameworks with same synthetic workloads representing real time application profile. In other 

words, embedding the frameworks on both the Testbed and evaluating it by executing applications on it. This 

evaluation will reveal the behaviour of system to the applied workload.  

The two sets of Testbed are, firstly without active storage Testbed i.e. the server node is used in its native way. 

Secondly, with active storage Testbed i.e. the server offloads the compute component of the application or the 

application itself nearer to the storage node, in other words the compute framework is embedded in active storage. 

 

B. Description of the Testbed: 

 

The „mobilityRPC is a Java Implemented Library. The mobilityRPC is used to develop the framework deployed 

here, which facilitates in offloading the code dynamically between the nodes. [https://code.google.com/p/mobility-

rpc/wiki/WhatIsCodeMobility]. In this evaluation, this framework is modified slightly with respect to interfaces and 

developed new listeners in order to embed it inside the proposed model.  

There are again two set of deployments, application running with mobility RPC and the same applications running 

without RPC using generic socket and ports. 

The below table shows the hardware and software used for evaluating both the Testbeds. The hardware section in 

table show two sets of resources being configured, the first column in which Xeon processor is used is the storage node 

and the second column with i3 processor is the application host node. These two nodes are directly connected via 

network switch and configured to share the drives in Testbed 1. Testbed 1 is a native storage node – application host 

node layout pattern in which the data is stored on the storage node and the application is executed on application host 

node. For the data required by the application, it needs to fetch the data from storage node, transfer to application host 

node buffer and then perform the execution on it.[17], [18] 

In case of Testbed 2, the hardware is invariant compared to Testbed 1. The software here used is ESXI 5.5 

hypervisor, which is bare metal hypervisor, and it creates virtual resources of all hardware components of storage node. 

The ESXI 5.5 is chosen since, it is the mostly used and deployed enterprise level virtualization technology in current 

time as well it supports real-time performance monitoring of the resources. In this deployment, the hardware is 

virtualized and multiple virtual machines can be created on which the storage services can be run on separate virtual 



 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11331 

 

machines and the offloaded applications can be run of other virtual machines, which are attached with virtual disks. 

These virtual disks store the data required by the application.[8], [19] These underlying disks can be configured as 

(BoD) bunch of disks or RAID. The disks when combined together from RAID, the logical entity are created which is 

referred to as LUNs. These LUNs can be used as Data stores for storing virtual machine data and virtual disks can be 

created from these and provisioned to application for use. The disks are configured with RAID 5 in both the 

deployments. Here after the two testbeds will be regarded as Architecture model 1 Testbed and Architecture Model 2 

Testbed that are shown in below Fig.1 and Fig. 2. 

 
Table 1: Software and Hardware of testbed 

SYSTEM WITH TESTBED 2 

HARDWARE 

1 Intel Xeon Processor 2.4 GHz 

1 6 GB RAM 

1 Gigabit Ethernet network card 

3 300GB HDD SAS 2.5” 

1 i3 Processor 2.4 GHz 

1 4 GB RAM 

1 Gigabit Ethernet network card 

1 500GB HDD  

SOFTWARE 

ESXI 5.5 

3 Virtual Machines (Windows / Ubuntu) 

MobilityRPC Framework 

IO Meter 

Hadoop 

Net Beans IDE 8.0.2 

 

 

     

Fig.1: Architecture Model 1 testbed                                      Fig.2: Architecture Model 2 testbed 

C. Architecture Model 1a Testbed 

The socket programming has been used to deploy the traditional way of interaction between the application host 

node, storage array node and application execution pattern. The application execution style implemented here requires 

the data to be moved from the storage node to the application host node. This uses network bandwidth and increases the 

time of application execution completion since, the waiting time increases for the application to receive the data 

required for processing.   



 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11332 

 

The purpose of the application developed and deployed here is to identify and display the line from the paragraphs 

in each file of the dataset, which has the maximum number of words in it. This program is not completely I/O bounded 

but it needs a large amount of files for processing. This application purely exhibits the read operations and the data are 

scattered across the two disks and one disks making the read operation to be random as well as sequential. The 

application is developed using the Java Program. 

Reuters dataset has been considered here which constitutes approximately 15000 text files. The goal of developed 

and implemented application is to read these individual files from dataset, scan it, identify the line in each paragraph 

with maximum number of words and display it.  

The application was developed with the sense of making the magnetic heads to move back and forth at the same 

time little bit processing of counting and comparing is given to processors. 

 

D. Architecture Model 1b Testbed: 

The mobility remote procedure call libraries are embedded into the virtual machine that is hosted on storage node. 

The application is hosted at other node, which is referred to as application host node. These two nodes are connected 

via Ethernet. The application starts running on the application host node, the application itself uses the libraries and 

API of the mobility remote procedure call to identify and offload the data intensive component of the application.  

There are listeners, which are used for identifying the data intensive part of the application, which helps in 

segregating, and offloading that particular component to data storage node using the Application-programming 

interface embedded on both nodes. The listener needs to be developed for various applications. The behavior of 

individual applications varies with its design and development pattern. Since the behaviors are different and the 

components designed will interact in a specific pattern to achieve the purpose of the application, it becomes necessary 

to understand the programming model of that application. 

The core idea of the programming model for this kind of implementation where it is needed to migrate the 

components or application closer to data it becomes necessary to design the application in a way that the application 

should fundamentally migrate the I/O intensive application or component closer to data keeping the processor bound 

component as it is.  

There are listeners that can actually identify the part of functions and statement in the code that can be offloaded to 

the storage node. This is not the actual partitioning of the application but implementation is closer enough to show the 

partitioning of the application.  

This implementation shows the application-programming interface of the mobility remote procedure call to accept 

the parameter from the listeners and then offload that object.  

This research work includes the development, implementation and testing of listeners related to text file and used 

along with it also proposed skeleton of listeners for video and other files which are elaborated below. 

The concept of partitioning of application depicts how the data intensive part of an application is identified and 

segregated. By data intensive, it is meant to be the part that interacts with the data. The part of the application that 

interacts with the data is only migrated. The part that fetches the data from the remote location and brings back the 

result to the local station. The application partitioning logic for all the above-mentioned data items is generalized. Since 

the motive of the research to identify the cost of storage for embedding the application and observing the enhancement 

in the application performance, the application partitioning has not been researched out in depth. The mobilityRPC 

supports the dynamic offloading of the application but does not has inbuilt application partitioning logic hence this 

implementation uses the Listener logic using the buffer and drivers to identify the data intensive part.  

The partitioning listeners not only identify a connection to the remote data source but also wrap the connection code 

into objects. This object is migrated to the remote location to fetch the requested data. The impact of application 

partitioning can only be measured during object creation. It depends upon how many methods from the application-

programming interface are being utilized for the connection and the how many external connections are to be made for 

partitioning. 

IV. EVALUATION RESULTS 

 

Processor utilization - In the curve of testbed 1b shown in Fig. 3, at initial stage there is a steep increase that rises 

to the peak value of approx. 77% of the utilization and fluctuates between 77% - 75% but stays constant within the 

same range. Here the overall aggregate CPU utilization is measured around 38%, the aggregate is considering all the 



 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11333 

 

cores of the system. On the other hand, when considering the curve for testbed 1a, fluctuations in the utilization curve 

is seen which reflects the pattern of the term used in management studies head and shoulders. The frequent fluctuation 

is because of accepting the I/O request, acknowledging the I/O and connecting with the application node. Since the 

testbed 1a curve is the result of socket programming implementation, the ports are the component through which the 

data are sent back to the application host node. This task of acknowledging the I/O request, processing request and 

sending the required data consumes the cycles of the processor at various intensity, which is seen in the curve.  

The curve in the testbed 1b shows decent improvement in the processor utilization of storage node compared to the 

testbed 1a curve. Thus, the graphs and tables shown below prove that active storage node increases utilization of 

underutilized resources and varies the utilization of processors combined with ports. This is the cost of embedding the 

application in storage node. 
 

Throughput Analysis - Since the Testbed 1b embeds the computation closer to data, the I/O request as well as the 

offloaded application component needs to be serviced by the processor at storage node. Once the processing is 

completed, the result needs to be transferred back to the application host end for further processing or to send back to 

client. This is measured by throughput parameter in KBPS. Observing at testbed 1a throughput curve from Fig. 4, since 

the dataset contains various sized text files, these text files were streamed out of the storage node in sets and the set size 

varied internally. This variation in set size varied the curve. There is a steep increase from the regular throughput 

measuring at 0 and 3KBPS to directly to 3171KBPS and peaking to 11110 KBPS. This drastic increase in the 

throughput is due to the socket connection and huge amount of text files of the dataset being initiated to transfer. As the 

dataset files being transferred the remaining dataset is reduced in quantity, but the reason behind the dropping of the 

throughput is the size of files being transferred. As in the dataset, size of the files varies hence the quantity decreases 

the total file sizes to be transferred also decreases thus by reducing the throughput. The sloping down of the throughput 

is because of the files size is reduced after some time and reaches 0Kbps after transferring all files.  

In case of testbed 1b, since the results are only needed to send back to the application host node, the throughput is 

tremendously dropped down. The result set size is very less compared to the dataset size. Thus, it is comprehended 

from the testbed 1b throughput curve that the drastic reduce in the throughput decrease the network traffic. 

 

Elapsed & Latency - Considering the third parameter of runtime or elapsed time and latency, the end-to-end 

performance is measured through the response time of the application. The response time of the application is measured 

at the application host end when all the data is received from the storage node. The latency for testbed 1a is measured at 

the application host side through the net beans runtime when the execution stops at end of file. The elapsed time is 

measured at the storage node when the storage processors complete transferring the files. On the same note, the testbed 

1b parameter is also measured.  

The latency is improved in testbed 1b implementation model compared to other observed from bar chart in Fig.5. 

Thus by proving that the time required transferring data would be compensated by increasing the processor utilization 

of storage there by affecting the application response time. If the throughout is more the response time of application is 

becoming less as observed from the below bar chart shown in Fig.6. 

 

 

 

 

 

 

 

 



 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11334 

 

  

Figure 3 Processor utilization Comparison                                              Figure 4  Throughput Analysis 

 

   
 

                       Figure 5 Elapsed Time Comparison                                              Figure 6    Response Time 

V. CONCLUSION AND FUTURE WORK 

Comparing the results of the two testbed execution for mobility RPC, it is very much observable that the second 

testbed i.e. realizing proposed model have increased utilization of the processors which is actually the cost for 

embedding the application inside the storage. In this evaluation, the testbed 1a have been deployed using traditional 

socket programming implementing same application with same data similarly as the mobility RPC implemented in 

testbed 1b. It is very clear from the above evaluation results that there is some cost of embedding the application within 

the storage array which also compensates the cost of data transfer rate which is verified through the latency and elapsed 

time of application. 

 

 



 
        ISSN(Online): 2320-9801 

           ISSN (Print):  2320-9798                                                                                                                                 

 

 

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 11, November2015  

 

Copyright to IJIRCCE                                                                DOI: 10.15680/IJIRCCE.2015. 0311209                                      11335 

 

REFERENCES 

 
[1] A. Mcafee, “The third platform,” 2013. 

[2] T. Myth and P. Revolution, “The Myth of the 3rd Platform Revolution,” no. July, pp. 1–7, 2015. 

[3] A. Konary and R. P. Mahowald, “The Coming of the 3rd Platform and What This Means for Software Business Models,” no. May, 2013. 

[4] F. Gens, “The 3rd Platform: Enabling Digital Transformation,” Idc, no. November, pp. 1–13, 2013. 

[5] J. Coomer, “Big Data Evolution,” 2012. 

[6] N. J, “Evaluation Parameters of Infrastructure Resources Required for Integrating Parallel Computing Algorithm and Distributed File 
System Evaluation Parameters of Infrastructure Resources Required for Integrating Parallel Computing Algorithm and Distributed Fil,” Int. 

J. Sci. Technol. Eng., vol. 11, no. 12, pp. 251–254, 2015. 

[7] S. C. Chiu, W. K. Liao, and A. N. Choudhary, “Distributed smart disks for I/O-intensive workloads on switched interconnects,” Futur. 
Gener. Comput. Syst., vol. 22, no. 5, pp. 643–656, Apr. 2006. 

[8] N. Jayakumar, F. Zaeimfar, and S. D. Joshi, “Workload Characteristics Impacts on file System Benchmarking International Journal of 

Advanced Research in Workload Characteristics Impacts on file System Benchmarking,” Int. J. Adv. Res. Comput. Sci. Softw. engiinerring, 
vol. 4, no. 2, pp. 39–44, 2015. 

[9] D. T. Jayakumar, Naveenkumar, Raj, SDjoshi, “International Journal of Advanced Research in Computer Science and Software 

Engineering,” Int. J., vol. 2, no. 9, pp. 62 – 70, 2012. 
[10] W. Paper, “DEPLOYING ORACLE DATABASE 11 g ON EMC SYMMETRIX VMAXe,” no. June 2011. 

[11] A. Oracle and W. Paper, “A Technical Overview of the Sun Oracle Database Machine and Exadata Storage Server,” Components, no. June, 

2010. 
[12] C. L. Philip Chen and C. Y. Zhang, “Data-intensive applications, challenges, techniques and technologies: A survey on Big Data,” Inf. Sci. 

(Ny)., vol. 275, pp. 314–347, Aug. 2014. 

[13] T. Leyden and M. Wos, “A Beginner ‟ s Guide To Next Generation Object Storage,” 2013. 
[14] S. Microsystems, “LUSTRE TM FILE SYSTEM,” no. December, 2007. 

[15] P. Pendle, “IMS on z / OS Using EMC Symmetrix Storage Systems.” 

[16] “OFFLOADING COMPRESSION AND DECOMPRESSION LOGIC CLOSER TO VIDEO FILES USING REMOTE PROCEDURE 
CALL,” no. August, 2015. 

[17] “A GENERIC PERFORMANCE EVALUATION,” no. FEBRUARY 2014, 2015. 

[18] J. Naveenkumar, R. Makwana, P. S. D. Joshi, and P. D. M. Thakore, “Performance Impact Analysis of Application Implemented on Active 
Storage Framework International Journal of Advanced Research in Performance Impact Analysis of Application Implemented on Active 

Storage Framework,” Int. J. Adv. Res. Comput. Sci. Softw. engiinerring, vol. 5, no. 2, pp. 1–6, 2015.  

[19] https://github.com/npgall/mobility-rpc 
[20] B. Hedlund, “Understanding Hadoop Clusters and the Network,” Stud. Data Cent. Networking, …, 2010. 

[21] G. Porter, “Decoupling storage and computation in Hadoop with SuperDataNodes,” ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, p. 41, 
2010. 

[22] J. Issa and S. Figueira, “Hadoop and memcached: Performance and power characterization and analysis,” J. Cloud Comput. Adv. Syst. 

Appl., vol. 1, no. 1, p. 10, 2012. 
[23] H. Performance and D. Division, “Hadoop MapReduce over Lustre *,” 2013. 

[24] D. W. Zhang, F. Q. Sun, X. Cheng, and C. Liu, “Research on Hadoop-based enterprise file cloud storage system,” in Proceedings of 2011 

3rd International Conference on Awareness Science and Technology, iCAST 2011, 2011, pp. 434–437. 
[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage 

Systems and Technologies, MSST2010, 2010. 

[26] H. S. Brief, “What is Hadoop ? Why virtualize Hadoop nodes ? How will Hadoop Nutanix & Hadoop = Enterprise Grade Big Data.” 
[27] J. Buell, “A Benchmarking Case Study of Virtualized Hadoop Performance on VMware vSphere 5,” Tech. white Pap. VMware, Inc, 2011. 

[28] Nutanix, “Hadoop on Nutanix Reference Architecture,” 2012. 

[29] Emc, “Hadoop on Emc Isilon Scale-Out Nas,” 2012, no. December 2012. 
[30] D. Kimmig and A. Schmidt, “DataSys 2013 - Tutorial The Hadoop Core – Understanding Map Reduce and the,” 2013. 

[31] D. Heger, “Hadoop Performance Tuning-A Pragmatic & Iterative Approach,” C. J., pp. 1–16, 2013. 

[32] C. W. Olofson and D. Vesset, “Worldwide Hadoop-MapReduce Ecosystem Software 2012 – 2016 Forecast,” no. May 2012, 2016. 
[33] VMware, “Virtualized Hadoop Performance with VMware vSphere 5.1 - Performance Study - TECHNICAL WHITE PAPER,” pp. 1–20, 

2012. 

[34] Sun Microsystems Inc., “Using Lustre with Apache Hadoop Overview and Issues with Hadoop + HDFS,” System, pp. 1–25, 2010. 
[35] M. Dunn, “Parallel I / O Testing for Hadoop,” 2010. 

[36] “Understanding_Hadoop_Clusters_and_the_Network-slides_and_text.pdf.” . 

[37] A. F. Different, A. To, and E. Analytics, “Modernizing Hadoop Architecture for Superior Scalability , Efficiency & Productive Throughput 
. The Impetus For Today ‟ s Hadoop Design.” 

[38] L. X. and J. L. and J. Wei, “FMEM: A Fine-grained Memory Estimator for MapReduce Jobs,” 10th Int. Conf. Auton. Comput. ICAC‟13, 

San Jose, CA, USA, June 26-28, 2013, pp. 65–68, 2013. 
[39] Y. Kang, Y. S. Kee, E. L. Miller, and C. Park, “Enabling cost-effective data processing with smart SSD,” in IEEE Symposium on Mass 

Storage Systems and Technologies, 2013. 

[40] J. Lin and C. Dyer, “Data-Intensive Text Processing with MapReduce,” Synth. Lect. Hum. Lang. Technol., vol. 3, pp. 1–177, 2010. 
[41] M. Mihailescu, G. Soundararajan, and C. Amza, “MixApart: Decoupled Analytics for Shared Storage Systems,” Proc. 11th USENIX Conf. 

File Storage Technol., pp. 133–146, 2013. 

[42] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay scheduling: a simple technique for achieving 
locality and fairness in cluster scheduling,” EuroSys, pp. 265–278, 2010. 


