

e-ISSN: 2320-9801 | p-ISSN: 2320-9798

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 9, Issue 6, June 2021

INTERNATIONAL STANDARD SERIAL NUMBER INDIA

Impact Factor: 7.542

9940 572 462

🕥 6381 907 438

🖂 ijircce@gmail.com

🛛 🧿 www.ijircce.com

|e-ISSN: 2320-9801, p-ISSN: 2320-9798|<u>www.ijircce.com</u>||Impact Factor: 7.542|

Volume 9, Issue 6, June 2021

| DOI: 10.15680/IJIRCCE.2021.0906190 |

Review on Health Assistance (Disease Prediction and Medicine, Exercise and Diet Suggestion) Using CNN

Mr. Ganesh Mane, Ms. Mansi Sharma, Ms. Shaikh Riyaz, Prof. Nagraju Bogiri

Department of Computer Engineering, KJCOEMR, Pune, India

ABSTRACT: Disease Prediction system is based on predictive modeling predicts the disease of the user on the basis of the symptoms that user provides as an input to the system. The system analyzes the symptoms provided by the user as input and gives the probability of the disease as an output Disease Prediction is done by implementing the Decision tree Classifier. CNN Classifier calculates the probability of the disease. Along with disease prediction system also calculates severity of disease and as per severity of disease suggests medicine. Suggesting diet and appropriate exercise is another merit of proposed system. Prediction of disease involves current as well as medical history of user.

KEYWORDS: Disease Prediction, CNN, Exercise and DietSuggestion

I. INTRODUCTION

S The prediction of disease at earlier stage becomes important task. But the accurate prediction on the basis of symptoms becomes too difficult for doctor. There is a need to study and make a system which will make it easy for end users to predict the chronic diseases without visiting physician or doctor for diagnosis. Additionally, in terms of personalized healthcare and disease prevention services, these depend primarily on the strategy used to derive knowledge from the analysis of lifestyle factors and activities. Through the use of intelligent data retrieval and classification models, it is possible to study disease, or even predict any abnormal health conditions. To predict such abnormality, the Convolutional neural network (CNN) model is used, which can detect the knowledge related to disease prediction accurately from unstructured medical health records. However, CNN uses a large amount of memory if it uses a fully connected network structure. Moreover, the increase in the number of layers can lead to an increase in the complexity analysis of the model.

Sr. no.	Paper Name	Author Name	Year	Outline	Advantages
1	A Medical- History- Based Potential Disease Prediction Algorithm	Wenxing et al	IEEE Access/2 019	This paper proposed novel deep- learning-based hybrid recommendation algorithm, which predicts the patient's possible disease based on the patient's medical history and provides a reference to patients and doctors	 It considers both, high-order relations as well as low order combination of disease among disease features, Improved comprehensiveness compared to previous system.
2	Designing	Dahiwade, D.,	IEEE	Proposed general disease	1) low time consumption

II. LITERATURE SURVEY

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 7.542 |

|| Volume 9, Issue 6, June 2021 ||

| DOI: 10.15680/IJIRCCE.2021.0906190 |

	Disease	Patle, G., &	Xplore/2	prediction, in which the living	2) minimal cost possible
	Prediction	Meshram, E.	019	habits of person and check-up	3) The accuracy of
	Model Using			information consider for the	disease prediction is
	Machine			accurate prediction	84.5%
	Learning			It also computes the risk	
	Approach			associated with general disease	
3	Explainable	Xu, Z., Zhang,	IEEE/20	Proposed a comorbidity network	1) Comfortably
	Learning for	J., Zhang, Q.,	19	involved end-to-end trained	incorporates the
	Disease Risk	& Yip, P. S. F.		disease risk prediction model.	comorbidity network into
	Prediction			The prediction performances are	a Bayesian framework
	Based on			demonstrated by using a real case	2) Exhibits superior
	Comorbidity			study based on three years of	prediction performance
	Networks			Kong Hogpital Authority	
1	Design And	Papaka A N	IEEE/20	This paper focused on heart	1) Accuracy is 80 77% in
4	Implementin	Repaka, A. N., Povikonti S	10	disease diagnosis by considering	spite of reducing the
	a Heart	D	19	previous data and information. To	attributes
	Disease	Franklin R		achieve this SHDP (Smart Heart	2) The performance of
	Prediction	G.		Disease Prediction) was built via	AES is highly secured
	Using	0.		Navies Bayesian in order to	compared to previous
	Naives			predict risk factors concerning	encrypting algorithm
	Bayesian			heart disease.	(PHEC).
5	Similar	Gao, J., Tian,	IEEE/20	Proposed a method to predict the	1) As the range of
	Disease	L., Wang, J.,	20	similarity of diseases by node	predictions expands, the
	Prediction	Chen, Y.,		representation learning.	proposed method is
	with	Song, B., &			better than the disease
	Heterogeneo	Hu, X.			prediction of only
	us Disease				chemical-disease data
	Information				source
(Networks	M d D		· · · · · · · · · · · · · · · · · · ·	
6	Chatbot for	Mathew, R.	IEEE/20	This paper explained a medical	1) This system help in
	Disease	B., Vargnese,	19	chatbot which can be used to	reducing conduction of
	and	S., JUY, S. E.,		of disease diagnosis and treatment	2) It identifies the
	Treatment	& Alex, 5. 5.		recommendation. Chathot can act	2) It identifies the
	Recommend			as a doctor	proper diagnosis
	ation using			as a doctor.	3) Chatbot doesn't
	Machine				require the help of
	Learning				physician
	8				4) Cheaper
					5) The chat and users
					relation is completely
					personal which helps
					users to be more open
					with their health matters
7	Chronic	Maurya, A.,	IEEE/20	The proposed system use machine	1) Detects and suggest
	Kidney	Wable, R.,	19	learning algorithm and suggest	diet which will be useful
	Disease	Shinde, R.,		suitable diet plan for CKD patient	to the doctors as well as
	Prediction	John, S.,		using classification algorithm on	patients
	and	Jadnav, R.,		medical test records.	
	Recommend	&Dakshayani,		This extracts the features which	

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 7.542 |

Volume 9, Issue 6, June 2021

| DOI: 10.15680/IJIRCCE.2021.0906190 |

	ation of Suitable Diet Plan by using Machine Learning	R.		are responsible for CKD, then machine learning process can automate the classification of the chronic kidney disease in different stages according to its severity.	
8	Designing Disease Prediction Model Using Machine Learning Approach.	Dahiwade, D., Patle, G., & Meshram, E.	IEEE/20 19	This system compares CNN and KNN for disease prediction Disease dataset from UCI machine learning website is extracted in the form of disease list and its symptoms. Pre- processing is performed on that dataset. After that feature extracted and selected. Then classification and prediction using KNN and CNN is performed.	 The CNN takes less time than KNN for classifying large dataset. CNN gives more accurate disease prediction than KNN.
9	Smart Health Monitoring System using IOT and Machine Learning Techniques	Pandey, H., & Prabha, S.	IEEE/20 20	This paper deal with IoT which helps to record the real time (patient) data using pulse rate sensor and arduino and is recorded using thing speak. Machine learning algorithms were used to make prediction of heart disease.	 The proposed system helps patient to predict heart disease in early stages. It will be helpful for mass screening system in villages where hospital facilities are not available.
10	Random Forest Algorithm for the Prediction of Diabetes.	VijiyaKumar, K., Lavanya, B., Nirmala, I., & Caroline, S. S.	IEEE/20 19	This paper proposed a system which performs early prediction of diabetes for a patient, with higher accuracy by using Random Forest algorithm.	 The accuracy level is greater when compared to other algorithms. The system is capable of predicting the diabetes disease effectively, efficiently and instantly.

III. SYSTEM ARCHITECTURE

The correct prediction of disease is the most challenging task. To overcome this problem data mining plays an important role to predict the disease. Medical science has large amount of data growth per year. Due to increase amount of data growth in medical and healthcare field the accurate analysis on medical data which has been benefits from early patient care. This system is used to predict disease according to symptoms. As shown in figure below, database containing symptoms of different diseases is fed as input to system along with current symptoms of user and medical history of patient (when patient observed same type of symptoms before). Python based system used CNN algorithm to predict disease patient is suffering from. After predicting disease system classified disease into mild, moderate and severe conditions.

e-ISSN: 2320-9801, p-ISSN: 2320-9798 www.ijircce.com | Impact Factor: 7.542 |

Volume 9, Issue 6, June 2021

| DOI: 10.15680/IJIRCCE.2021.0906190 |

Fig.1 architecture of proposed system

If disease is mild then it suggest some medicine, in case of moderate along with medicines system suggest user to visit doctor if symptoms doesn't fade away and when its severe case system warn user to immediately visit doctor. System also suggests diet and exercise as per the disease.

IV. CONCLUSION

We proposed general disease prediction system based on machine learning algorithm. We utilized KNN and CNN algorithms to classify patient data because today medical data growing very vastly and that needs to process existed data for predicting exact disease based on symptoms. We got accurate general disease risk prediction as output, by giving the input as patients record which help us to understand the level of disease risk prediction. Because of this system may leads in low time consumption and minimal cost possible for disease prediction and risk prediction. We can say CNN is better than KNN in terms of accuracy and time.

REFERENCES

- Wenxing Hong, ZiangXiong, NannanZheng, Yang Weng, "A Medical-History-Based Potential Disease Prediction Algorithm", A Medical-History-Based Potential Disease Prediction Algorithm IEEE Access VOLUME 7, 2019, doi 10.1109/ACCESS.2019.2940644
- [2] Dahiwade, D., Patle, G., & Meshram, E. (2019). Designing Disease Prediction Model Using Machine Learning Approach. 2019 Proceedings of the Third International Conference on Computing Methodologies and Communication (ICCMC 2019) IEEE Xplore doi:10.1109/iccmc.2019.8819782
- [3] Xu, Z., Zhang, J., Zhang, Q., & Yip, P. S. F. (2019). Explainable Learning for Disease Risk Prediction Based on Comorbidity Networks. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). doi:10.1109/smc.2019.8914644
- [4] Repaka, A. N., Ravikanti, S. D., & Franklin, R. G. (2019). Design And Implementing Heart Disease Prediction Using Naives Bayesian. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). doi:10.1109/icoei.2019.8862604
- [5] Gao, J., Tian, L., Wang, J., Chen, Y., Song, B., & Hu, X. (2020). Similar Disease Prediction with Heterogeneous Disease Information Networks. IEEE Transactions on NanoBioscience, 1–1. doi:10.1109/tnb.2020.2994983

|e-ISSN: 2320-9801, p-ISSN: 2320-9798|<u>www.ijircce.com</u>||Impact Factor: 7.542|

Volume 9, Issue 6, June 2021

| DOI: 10.15680/IJIRCCE.2021.0906190 |

- [6] Mathew, R. B., Varghese, S., Joy, S. E., & Alex, S. S. (2019). Chatbot for Disease Prediction and Treatment Recommendation using Machine Learning. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). doi:10.1109/icoei.2019.8862707
- [7] Maurya, A., Wable, R., Shinde, R., John, S., Jadhav, R., &Dakshayani, R. (2019). Chronic Kidney Disease Prediction and Recommendation of Suitable Diet Plan by using Machine Learning. 2019 International Conference on Nascent Technologies in Engineering (ICNTE). doi:10.1109/icnte44896.2019.8946029
- [8] Dahiwade, D., Patle, G., & Meshram, E. (2019). Designing Disease Prediction Model Using Machine Learning Approach. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). doi:10.1109/iccmc.2019.8819782
- [9] Pandey, H., & Prabha, S. (2020). Smart Health Monitoring System using IOT and Machine Learning Techniques. 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII). doi:10.1109/icbsii49132.2020.9167660
- [10] VijiyaKumar, K., Lavanya, B., Nirmala, I., & Caroline, S. S. (2019). Random Forest Algorithm for the Prediction of Diabetes. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). doi:10.1109/icscan.2019.8878802

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

🚺 9940 572 462 应 6381 907 438 🖂 ijircce@gmail.com

www.ijircce.com