

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Algometric Solution for Creation of Data Warehouse

Shahid Bashir Dar¹, Ashish Sharma² M. Tech Student, Dept. of CSE, BIMT, Mehli, Shimla, H.P, India¹ Assistant Professor, Dept. of CSE, BIMT, Mehli, Shimla, H.P, India²

ABSTRACT: As on date when data warehouse is necessitated as an information repository, design of data warehouse is not standardized and development of warehouse is primarily treated as Extract, Transform & Load (ETL) project, just like a typical software development project. Even after years of successful development in data warehousing across the globe, there is still no standardisation on the design of data warehouse, neither there is generic design technique which can be applied for the development of warehouse irrespective of type of data. In this research paper we propose a programmatic solution for creation of data warehouse. The proposed solution creates dimension tables based on the physical structure of operations sources (OLTP) and upon successful creation of data warehouse.

KEYWORDS: data marts, dimension tables, fact tables.

I. INTRODUCTION

Data Warehouse is an asset for every enterprise, and it is being used within and outside the organization in order to facilitate flow of information. Data warehouse is not individual specific but is designed to entertain enterprise user with prerequisite information. Organizations across the globe are creating such information repositories for easy information access and delivery. However, even as on date when data warehouse is necessitated as information repository, design of data warehouse is not standardized and development of warehouse is primarily treated as Extract, Transform & Load (ETL) project, just like typical software development project. Even after years of successful development of data warehouse across the globe, there is still no standardisation on design of data warehouse, neither there is generic design technique which can be applied for the development of warehouse irrespective of type of data.

Majid and Muheet [1] in their paper titled, "Warehouse Creator: A Generic Enterprise Solution", proposed methodology for creation of warehouse making use of fact and dimension tables however they have not given physical architecture for creation of data warehouse. In this research paper we propose programmatic solution for creation of data warehouse, the proposed solution creates dimension tables based on the physical structure of operations sources(OLTP) and upon successful creation of dimensions, fact table is created and accordingly populated.

A. Data Warehouse Design:

Online Transaction Processing systems (OLTP) can't be used for Online Analytical Processing (OLAP) neither they are used for predicting/mining as they are meant for day-to-day business operations. However data from these OLTP flows into the warehouse where it is used for Analysis Prediction and strategic decision making. Data Warehouse is primarily composed of fact table and dimension tables (referred as dimensions), these dimension tables describe the option to cut or view the data in the fact table. Number of dimension tables vary from few to numerous depending upon complexity of data resulting in data warehouse and there are no given obligations to follows as of how many dimensions should be there to have credible warehouse.

Primarily data from operational sources is to be extracted, transformed and loaded into target warehouse, however before ETL can be performed first and foremost the structure of target data warehouse is to be created. The biggest complexity lies in designing the structure of data warehouse i.e,

• Number of dimension table/s

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

- o Structure of each dimension table/s
- Granularity of data
- Structure of fact table

An enterprise has numerous operation sources which vary not only in structure but also have different DBMS like Oracle, MySql, SQL server etc. thus are heterogenic in nature. Online Transaction Processing Systems (OLTP) are meant for business operations and now a day's enterprise has numerous operational sources which are geographically distant and structurally complex.

II. RELATED WORK

Bill Inmon primarily gave the idea of warehousing in 1992, however, the roots of warehousing can be traced back to 1960 when G. Mills and D. College developed in their project the concept of dimensions and facts. It was not till 2000 when people realized the essence of warehousing and emergence of its implementation. Diego Calvanese et.al [9] in 2001 presented a novel approach to data integration in a data warehouse. Their approach is based on a conceptual representation of the Data Warehouse application domain, and follows the so-called local-as-view paradigm. Watson [10] in 2002 discusses the recent developments in data warehousing. Santos et.al [11] in 2009, demonstrated that data warehouses must be able to enable continuous data integration, in order to deal with the most recent business data. Cuzzocrea et.al [12] in 2013 explores the convergence of Data Warehousing, OLAP and data-intensive Cloud Infrastructures in the context of analytics over Big Data.

Majid and Muheet [1] in their research starting from 2006 to 2014 concluded that there should be a generic warehouse tool to create warehouse of any enterprise making use of fact and dimension tables.

III. CASE STUDY

University has numerous processes going on simultaneously like Accounts, HRM, Examination, Library etc, however in this case study we will consider only one such process; University Examination System.

University Examination System is itself composed of numerous sub processes like

- i. Registration-records: Student registration details at the time of admission. Every student admitted to university has to go through the process of registration.
- ii. Enrollment: Every registered student is enrolled for a specific course, student may be enrolled with more than one course but will be registered only once.
- iii. Transit- records: Student marks he/she has appeared for each subject/paper.
- iv. Result: For every enrolled course result will be declared

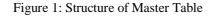
All the data present in operational sources do not make it into warehouse, but selective data become part of data warehouse. Warehouse designers carefully choose source (database/table) from OLTP which will be extracted and become part of warehouse. The table discussed above are graphically represented below (structure & data), the sources which will be part of warehouse.

These sources are heterogeneous and are spread across organization (geographically distant) and are accessed via remote host using IP address. These sources only have read access for the creation for warehouse and no data modification/updating can be performed on these data sets.

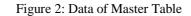
Data set in consideration here will result in data mart for the university examination system. Data Marts are individual components and refer to specific process of the system like sales, finance, examination etc. Thus data mart is subset of a warehouse and these data marts can be integrated to create Data warehouse or central data warehouse. The purpose of data mart is for the specific process of the system while as central data warehouse is massive in size and caters entire enterprise.

Graphical presentation of these sources (structure & data) is shown below

i. Database Registration : Table Master



(An ISO 3297: 2007 Certified Organization)


Vol. 3, Issue 9, September 2015

Field	Туро	1	Nu 1 1	i.	Kow	È	Default	Evtra
Tera	туре		Nacc		ivey	1	Deradici	LALIA
reano	varchar(20)	Ĩ	NO	1	PRI	Ī		
name	varchar(35)	Ť.	YES	Ì.		È	NULL	
fname	varchar(35)	î.	YES	i.		i.	NULL	

MariaDB [registration]> 🗌

+ regno	name	fname
1		
+ 10034-PC-2006	SAZIYAH MAHBOOBA	MOHMAD SYED SHAH
11632-AW-2004	NARGIS JAN	MOHD AKRAM GANIE
12497-PC-2007	IRSHAD NAZIR SHAH	NAZIR AHMAD SHAH
12499-PC-2007	ZAHOOR AHMAD TEELI	ABDUL REHMAN TEELI
12500-PC-2007	MOHD AMIN TEELI	ABDUL GANI TEELI
12501-PC-2007	OYAIS JAN	NAZIR AHMAD KAW
12503-PC-2007	AB WAHID MIR	AB GANI MIR
12508-PC-2007	SHEERAZ AHMAD MIR	AB GANI MIR
12509-PC-2007	AJAZ AHMAD BHAT	AB KHALIQ BHAT
12513-PC-2007	GAZENFAR GULL	GH MOHD DAR
12514-PC-2007	YOUNOUS GANI WANI	ABDUL GANI WANI
12515-PC-2007	JAVEED AHMAD DAR	ASSADULLAH DAR
12523-PC-2007	MUDASIR MAQBOOL	MOHAMMAD MAQBOOL SOFI
12525-PC-2007	ROUF FAYAZ	FAYAZ AHMAD TEELI

ii. Database enrollment : Table Enrollment_12

Field	Туре	Null	Key	Default	Extra
regno	varchar(15)	NO	PRI		
rollno	int(9)	I NO	PRI	Θ	
sub1	varchar(4)	YES		NULL	
sub2	varchar(4)	YES		NULL	
sub3	varchar(4)	YES	ř i	NULL	
sub4	varchar(4)	YES		NULL	İ.
year	varchar(4)	YES		NULL	1

7 rows in set (0.00 sec)

MariaDB [enrollment]> 🗌

Figure 3: Structure of Enrollment_12 Table

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

regno	rollno	sub1	sub2	sub3	sub4	year
10034-PC-2006	2676	GE	СН	BO	ZO	UG3
11632-AW-2004	2540	GE	ZO	BO	CH	UG3
2497-PC-2007	2617	GE	CH	BO	ZO	UG3
2499-PC-2007	2680	GE	CH	BO	ZO	UG3
2500-PC-2007	2681	GE	CH	BO	ZO	UG3
2501-PC-2007	2704	GE	CH	BO	ZO	UG3
.2503-PC-2007	2641	GE	CH	BO	ZO	UG3
.2508-PC-2007	2701	GE	CH	BO	ZO	UG3
2509-PC-2007	2595	GE	CH	BO	ZO	UG3
2513-PC-2007	2685	GE	СН	BO	ZO	UG3
2514-PC-2007	2683	GE	CH	BO	ZO	UG3
2515-PC-2007	2618	GE	CH	BO	ZO	UG3
2523-PC-2007	2657	GE	CH	BO	ZO	UG3
.2525-PC-2007	2711	GE	CH	BO	ZO	UG3
2526-PC-2007	2649	GE	I CH	BO	ZO	UG3
2527-PC-2007	2628	GE	I CH	BO	ZO	UG3
2528-PC-2007	2646	GE	CH	BO	ZO	UG3
2529-PC-2007	2643	GE	CH	BO	ZO	UG3
2534-PC-2007	2596	GE	CH	BO	ZO	UG3
2548-PC-2007	2710	GE	CH	BO	ZO	UG3
.2571-PC-2007	2607	GE	I CH	BO	ZO	UG3
.2572-PC-2007	2674	I GE	I CH	BO	ZO	UG3
.2575-PC-2007 .2576-PC-2007	2688 2598	GE GE	I CH	BO	ZO ZO	UG3
2579-PC-2007	2598	I GE		B0 B0	20 Z0	UG3
2583-PC-2007	2599	I GE		BO	20	UG3
2585-PC-2007	2717	I GE		BO	Z0	UG3
2588-PC-2007	2694	I GE		BO	ZO	UG3
2589-PC-2007	2694	I GE	I CH	BO	ZO	UG3
2590-PC-2007	2698	I GE		BO	1 Z0	UG3
2591-PC-2007	2626	GE		BO	20	
2592-PC-2007	2626	I GE		BO	20	UG3
12593-PC-2007	2706	GE	I CH	BO	Z0	UG3

Figure 4: Data of Enrollment_12 Table

iii. Database Marks : Table Xmarks

MariaDB [Marks]> desc Xmarks;

Field	Туре	Null	Key	Default	Extra
rollno	varchar(20)	I NO	PRI		
sub	varchar(10)	NO	PRI	İ	Ľ.
paper	char(1)	NO	PRI	İ	
marks	int(5)	YES		NULL	

4 rows in set (0.00 sec)

MariaDB [Marks]>

Figure 5: Structure of Xmarks Table

MariaDB [Marks]	> select	* from Xmarks
rollno	sub	paper	marks
+	+	+	++
1	I BO	I A	24
i 1	BO	ів	26
1	СН	I A	19
j 1	CH	В	12
1 1	GE	i A	41 j
j 1	GE	I B	39
1 1	ZO	I A	18
j 1	ZO	В	18
2	BO	I A	23
2	BO	I B	29
2	CH	A	24
2	CH	B	j 15 j
2	GE	A	39
2	GE	I B	55
2	ZO	A	18
2	ZO	jВ	12
3	BO	j A	14
3	BO	ļВ	24

Figure 6: Data of Xmarks Table

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

iv. Database uresult : Table Result

MariaDB [uresult]> desc Result;

	Null	Key	Default	Extra
regno varchar(15) rollno int(7) result varchar(15)	NO NO YES	PRI PRI	0 NULL	
3 rows in set (0.00 sec		++		+

Figure 7: Structure of Result Table

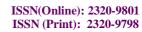
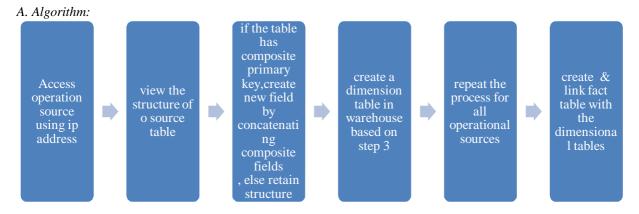

regno rollno result 10034-PC-2006 2676 PASS/374 11632-AW-2004 2540 PASS/361 12497-PC-2007 2617 PASS/395 12497-PC-2007 2680 PASS/395 12500-PC-2007 2681 PASS/381 12501-PC-2007 2681 PASS/393 12503-PC-2007 2704 PASS/393 12509-PC-2007 2701 PASS/393 12509-PC-2007 2685 PASS/344 12513-PC-2007 2685 PASS/378 12513-PC-2007 2685 PASS/387 12525-PC-2007 2618 PASS/387 12525-PC-2007 2618 PASS/388 12525-PC-2007 2618 PASS/388 12525-PC-2007 2646 PASS/388 12527-PC-2007 2643 PASS/393 12528-PC-2007 2643 PASS/394 12574-PC-2007 2667 PASS/393 12574-PC-2007 2688 PASS/393 12574-PC-2007 2688 PASS/393 12574-PC-2007 2667 PASS/393 <td< th=""><th>MariaDB [uresult]></th><th>select *</th><th>* from Result;</th></td<>	MariaDB [uresult]>	select *	* from Result;
11632-AW-2004 2540 PASS/361 12497-PC-2007 2617 PASS/395 12497-PC-2007 2680 PASS/395 12500-PC-2007 2680 PASS/395 12503-PC-2007 2680 PASS/395 12503-PC-2007 2681 PASS/393 12503-PC-2007 2641 PASS/393 12503-PC-2007 2641 PASS/393 12513-PC-2007 2685 PASS/344 12513-PC-2007 2685 PASS/378 12523-PC-2007 2657 PASS/387 12525-PC-2007 2657 PASS/387 12526-PC-2007 2657 PASS/388 12526-PC-2007 2649 PASS/388 12526-PC-2007 2648 PASS/393 12526-PC-2007 2648 PASS/393 12529-PC-2007 2646 PASS/393 12529-PC-2007 2674 PASS/393 12574-PC-2007 2674 PASS/430 12575-PC-2007 2674 PASS/430 12575-PC-2007 2674 PASS/430 12575-PC-2007 2674 PASS/430	regno	rollno	result
12590-PC-2007 2620 PASS/393 12591-PC-2007 2626 PASS/375 12592-PC-2007 2671 PASS/371	10034 - PC - 2006 11632 - AW - 2004 12497 - PC - 2007 12500 - PC - 2007 12501 - PC - 2007 12503 - PC - 2007 12508 - PC - 2007 12513 - PC - 2007 12514 - PC - 2007 12515 - PC - 2007 12525 - PC - 2007 12526 - PC - 2007 12528 - PC - 2007 12528 - PC - 2007 12529 - PC - 2007 12529 - PC - 2007 12529 - PC - 2007 12534 - PC - 2007 12574 - PC - 2007 12574 - PC - 2007 12575 - PC - 2007 12575 - PC - 2007 12575 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12579 - PC - 2007 12583 - PC - 2007 12588 - PC - 2007	2676 2540 2617 2680 2681 2704 2595 2685 2685 2685 2618 2618 2648 2648 2648 2643 2596 2710 2607 2674 2688 2599 2605 2717 2694	PASS/374 PASS/361 PASS/395 PASS/395 PASS/381 PASS/381 PASS/317 PASS/393 PASS/317 PASS/393 PASS/411 PASS/378 PASS/411 PASS/365 PASS/365 PASS/365 PASS/365 PASS/388 PASS/393 PASS/393 PASS/394 PASS/394 PASS/400 PASS/400 PASS/400 PASS/412 PASS/400 PASS/412 PASS/400 PASS/412 PASS/416 PASS/416 PASS/416 PASS/392 PASS/352
	12590-PC-2007 12591-PC-2007 12592-PC-2007	2626 2671	PASS/393 PASS/375 PASS/371

Figure 8: Data of Result Table

IV. PROPOSED ALGORITHMIC SOLUTION

We propose automated warehouse creation algorithm, and then implement the same using Linux and Java. The solution makes certain assumptions as;


- i. Operational Sources have been identified.
- ii. Operational Sources can be remotely accessed via IP address.
- iii. Have read rights of the operational sources.
- iv. Operational Sources are consistent.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

B. Elaboration:

- i. Establish JDBC connection with operation Source.
- ii. View structure of the table which has been identified e.g; "Database enrollment: Table Enrollment_12 "
- iii. If the table has composite primary key, create new primary key e.g; Since Enrollment_12 has composite primary key (regno,rollno) New primary key will be created i.e, regnorollno and data in this filed will be like 10034-PC-2006-2676-
- iv. New dimension table will be created in warehouse.
- v. Create fact table maintaining primary key foreign key relationship with the dimensional tables.

C. Results:

Data warehouse based on algorithm is created with following tables & structures;

The Created Warehouse retains the names of the source tables however, with variant structure based on presence or absence of composite primary keys. The structure of data warehouse tables along with data is shown below. i. Master :

MariaDB [fuok]> desc M		+	++	+
Field Type	Null	Key	Default	Extra
regno varchar(20) name varchar(35) fname varchar(35)	YES	PRI	NULL NULL	
3 rows in set (0.00 se	+ с)	+	++	+

Figure 10: Structure of Master Table

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

MariaDB [fuok]> se	ect * from Master;	
regno	name	fname
10034-PC-2006 11632-AW-2004 12499-PC-2007 12500-PC-2007 12500-PC-2007 12503-PC-2007 12508-PC-2007 12509-PC-2007 12513-PC-2007 12514-PC-2007 12515-PC-2007 12525-PC-2007 12525-PC-2007	SAZIYAH MAHBOOBA NARGIS JAN IRSHAD NAZIR SHAH ZAHOOR AHMAD TEELI MOHD AMIN TEELI OYAIS JAN AB WAHID MIR SHEERAZ AHMAD MIR AJAZ AHMAD BHAT GAZENFAR GULL YOUNOUS GANI WANI JAVEED AHMAD DAR MUDASIR MAQBOOL ROUF FAYAZ	MOHMAD SYED SHAH MOHD AKRAM GANIE NAZIR AHMAD SHAH ABDUL REHMAN TEELI ABDUL GANI TEELI NAZIR AHMAD KAW AB GANI MIR AB GANI MIR AB GANI MIR AB KHALIQ BHAT GH MOHD DAR ABSADULLAH DAR MOHAMMAD MAQBOOL SOFI FAYAZ AHMAD TEELI

Figure 11: Data of Master Table

ii. Enrollment_12:

Field	Туре	Null	Key	Default	Extra
regno	varchar(15)	YES		NULL	+
rollno	int(9)	YES		NULL	
sub1	varchar(4)	YES		NULL	
sub2	varchar(4)	YES	1 I	NULL	8
sub3	varchar(4)	YES	S 2	NULL	
sub4	varchar(4)	YES		NULL	Ű.
year	varchar(4)	I YES		NULL	
regnorollno	varchar(50)	NO	PRI		

Figure 12: Structure of Enrollment_12 Table

MariaDB [fuok]> select * from Enrollment_12; ----+ regno | rollno | sub1 | sub2 | sub3 | sub4 | year | regnorollno - - - - - - - -- - - - -- - - - -- - - -10034 - PC - 2006 11632 - AW - 2004 12497 - PC - 2007 12499 - PC - 2007 12500 - PC - 2007 10034-PC-2006-2676-11632-AW-2004-2540-2676 UGЭ GE CH BO ZO 2540 GE ZO BO CH UG3 12497-PC-2007-2617-12499-PC-2007-2680-12500-PC-2007-2681-GE GE 2617 CH BO ZO UG3 сH ZÖ ŪG3 2680 BO Ζõ 2681 GE CH BO UG3 12501-PC-2007 12503-PC-2007 12508-PC-2007 12501-PC-2007-2704-12503-PC-2007-2641-12508-PC-2007-2701-GE GE CH CH Z0 Z0 2704 BO UG3 2641 BO UG3 2701 GE ĊН BÖ Zõ ŪG3 12509-PC-2007 12513-PC-2007 12514-PC-2007 12509-PC-2007-2595-12513-PC-2007-2685-12514-PC-2007-2683-2595 GΕ CH BO ΖO UG3 2685 GE CH BO ZO UG3 2683 GE ĈН BO Zō UG3 12515-PC-2007 12523-PC-2007 12525-PC-2007 Z0 Z0 Z0 12515-PC-2007-2618-12523-PC-2007-2657-12525-PC-2007-2711-2618 CH BO UG3 GE 2657 2711 GE GE CH CH BO. UG3 UG3 BŐ 12526-PC-2007 2649 UG3 12526-PC-2007-2649-GE CH во ZO 12527-PC-2007 12528-PC-2007 12527-PC-2007-2620-12528-PC-2007-2646-2628 2646 GE GE СН BO Z0 Z0 UG3 BO CH LIGE 12529 - PC - 2007 12534 - PC - 2007 12529-PC-2007-2643-12534-PC-2007-2596 2643 GE СH BO ZO UGЗ 2596 GE CH j BO j ZO UGЗ I.

Figure 13: Data of Enrollment_12 Table

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

iii. Xmarks:

Field	Туре	Null	Key	Default	Extra
rollno	varchar(20)	I YES	+	I NULL	+
sub	varchar(10)	YES	i	NULL	i
paper	char(1)	YES	î.	NULL	î.
marks	int(5)	YES	i i	NULL	i i
rollnosubpaper	varchar(50)	I NO	I PRI		Ê

Tong In Sec (orde sec)

.

Figure 14: Structure of Xmarks Table

rollno	sub	paper	marks	rollnosubpaper
1	B0	A	24	1-B0-A-
1	BO	jВ	26	1-B0-B-
1	СН	A	19	1-CH-A-
1	СН	В	12	1-CH-B-
1	GE	A	j 41	1-GE-A-
1	GE	B	39	1-GE-B-
1	ZO	A	18	1-ZO-A-
1	ZO	В	18	1-Z0-B-
2	BO	A	23	2-B0-A-
2	BO	B	29	2-B0-B-
2	СН	A	24	2-CH-A-
2	СН	В	15	2-CH-B-
2	GE	A	39	2-GE-A-
2	GE	B	55	2-GE-B-
2	ZO	A	18	2-Z0-A-
2	ZO	В	12	2-Z0-B-
2 3	BO	A	14	3-B0-A-
3	BO	B	24	3-B0-B-
3	СН	A	21	3-CH-A-

Figure 15: Data of Xmarks Table

iv. Result:

MariaDB [fuok]> +	+			Default Extra	
result	varchar(15) varchar(50)	YES YES NO	PRI	NULL NULL NULL	
4 rows in set (0.00 sec)					

Figure 16: Structure of Result Table

		0000002000000000		10201020000	The second second second second second second second second second second second second second second second s
MarialDB	[fuok]>	select	*	from	Result;

regno	rollno	result	regnorollno1
10034-PC-2006	2676	PASS/374	10034-PC-2006-2676-
11632-AW-2004	2540	PASS/361	11632-AW-2004-2540-
12497-PC-2007	2617	PASS/395	12497-PC-2007-2617-
12499-PC-2007	2680	PASS/395	12499-PC-2007-2680-
12500-PC-2007	2681	PASS/381	12500-PC-2007-2681-

Figure 17: Data of Result Table

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

v. fuok_fact:

Field	Туре	Null	Key	Default Extra
regnorollno	varchar(50)	YES	MUL	NULL
regno	varchar(20)		MUL	NULL
regnorollno1	varchar(50)		MUL	NULL
rollnosubpaper	varchar(50)		MUL	NULL

Figure 18: Structure of fuok_fact Table

-			
50188-W-2007-965-	50188-W-2007	50188-W-2007-965-	965-GE-A-
50188-W-2007-965-	50188-W-2007	50188-W-2007-965-	965-GE-B-
50188-W-2007-965-	50188-W-2007	50188-W-2007-965-	965-IT-A-
50188-W-2007-965-	50188-W-2007	50188-W-2007-965-	965-IT-B-
50188-W-2007-965-	50188-W-2007	50188-W-2007-965-	965-MA-A-
50188-W-2007-965-	50188-W-2007	50188-W-2007-965-	965-MA-B-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-CH-A-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-CH-B-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-GE-A-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-GE-B-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-MA-A-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-MA-B-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-PH-A-
50197-W-2007-966-	50197-W-2007	50197-W-2007-966-	966-PH-B-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-CH-A-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-CH-B-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-GE-A-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-GE-B-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-MA-A-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-MA-B-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-PH-A-
50198-W-2007-967-	50198-W-2007	50198-W-2007-967-	967-PH-B-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-CH-A-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-CH-B-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-GE-A-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-GE-B-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-MA-A-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-MA-B-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-PH-A-
50199-W-2007-968-	50199-W-2007	50199-W-2007-968-	968-PH-B-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-CH-A-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-CH-B-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-GE-A-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-GE-B-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-MA-A-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-MA-B-
50201-W-2007-969-	50201-W-2007	50201-W-2007-969-	969-PH-A-

Figure 19: Data of fuok_fact Table

V. CONCLUSION AND FUTURE WORK

With almost all databases designed using third normal form Algometric solution is proposed for design of data warehouse using a university data set. Algorithm was implemented in java on Linux platform (Fedora). The algorithm focuses completely on design of dimension tables and resultant fact table. Resultant warehouse was tested for basic OLAP operations and gave satisfactory results. Researchers/engineers are encouraged to test it on different and large data sets so that algorithm (if required) can be accordingly modified/enhanced.

REFERENCES

- Majid Zaman, Muheet Ahmed Butt, "Warehouse Creator: A Generic Enterprise Solution", International Journal Of Engineering And Science, Vol.2, Issue 12 (May 2013), Pp 65-68.
- Shaweta," Critical Need of the Data Warehouse for an Educational Institution and Its Challenges", International Journal of Computer Science and Information Technologies, Vol. 5 (3), 2014, 4556-4559.
- 3. Salvatore T. March, and Alan R. Hevner. "Integrated decision support systems: A data warehousing perspective." Decision Support Systems 43.3 (2007): 1031-1043.
- 4. Thomsen, Christian, Torben Bach Pedersen, and Wolfgang Lehner. "RiTE: Providing on-demand data for right-time data warehousing." Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on. IEEE, 2008.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

- 5. Ricardo Santos Jorge, and Jorge Bernardino. "Optimizing data warehouse loading procedures for enabling useful-time data warehousing." Proceedings of the 2009 International Database Engineering & Applications Symposium. ACM, 2009.
- Ashish Thusoo, Borthakur, Raghotham Murthy, Zheng Shao, Namit Jain, Hao Liu, Suresh Anthony, Joydeep Sen Sarma, "Data warehousing and analytics infrastructure at facebook." Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM, 2010.
- 7. Arun Sen, K. Ramamurthy, and Atish P. Sinha. "A model of data warehousing process maturity." Software Engineering, IEEE Transactions on 38.2 (2012): 336-353.
- 8. Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, Erik Paulson "Efficient processing of data warehousing queries in a split execution environment." Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM, 2011.
- 9. Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo Rosati, "Data integration in data warehousing." International Journal of Cooperative Information Systems 10.03 (2001): 237-271.
- Hugh J. Watson, "Recent developments in data warehousing." Communications of the Association for Information Systems 8.1 (2002): 1.
 Ricardo Santos Jorge, and Jorge Bernardino. "Optimizing data warehouse loading procedures for enabling useful-time data
- warehousing." Proceedings of the 2009 International Database Engineering & Applications Symposium. ACM, 2009. 12. Cuzzocrea, Alfredo. "Analytics over big data: Exploring the convergence of datawarehousing, olap and data-intensive cloud
- infrastructures." 2013 IEEE 37th Annual Computer Software and Applications Conference. IEEE, 2013.

BIOGRAPHY

Shahid Bashir Dar is the student of MTECH department of CSE, BIMT Shimla(HP) India. He has done his BTECH in CSE from IUST Kashmir. His research interests are Data warehouse, Data and network Security.

Ashish Sharma is working as an Assistant Professor in the department of CSE, BIMT Shimla(HP). His research interests are data and cloud security, databases etc.