

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13693

A SOA Approach to Build Remote Lab
Services

T.V.Lakshmi Sukrutha

Assistant Professor, Dept. of Computer Science Engineering, Methodist College of Engineering and Technology,

Hyderabad, Telangana, India

ABSTRACT: Basically, a lab accommodates few students when the number of systems is limited. Each student will be
allocated a particular system and assign to complete the experiment in a given time. In such situation a kind of
asynchronous activity will be taking place in the lab. Considering this time constraint and limited resources this project
mainly concentrates on building an application where huge number of students can perform their experiments at any
time and use long hours which are convenient to them. In order to meet the above requirements, it is necessary that the
designed application be web based which increases the number of lab users. The proposed project uses Service
Oriented Architecture (SOA) rather than Client Server Architecture as this Architecture uses multiple servers for user
interface, data validation and database which involve complex programming. SOA applications are easy to develop and
their implementation depends on services and is essentially a collection of services. Each service implements one
action. Services include unassociated, loosely coupled units of functionality that communicate with each other. The
communication can involve either simple data passing or it could involve two or more services coordinating some
activity. Some means of connecting services to each other is needed. This application includes mainly two services, one
is online booking and the other is remote accessing. Students can book date and time according to their convenience
and remotely access lab by logging in. If a student blocks date and time for a particular usage, another student who
blocks the same time and date is intimated that it is booked.

KEYWORDS: Service Oriented Architecture, Web services, Apache Axis.

I. INTRODUCTION

The improvements in communication network and the emergence of Internet have made revolutionary changes in the
dissemination of information and the methods of learning. The Remote lab method is one of those practices being used
by many through Internet facility. This facility has given an opportunity to practice to those people who cannot attend
the traditional lab, due to some problems such as geographical distance i.e. living far away from the educational
institutions, financial constraints, scheduling problems and the like. Within the disciplines of Engineering and Physical
Sciences, lab work is considered to be the heart of learning and can have a strong impact on students’ learning
outcomes. Labs based sessions are widely used in order to provide physical evidence of theoretical principles and to
teach practical skills. When used appropriately they can enthuse, motivate and inspire students [5]. In many cases, the
theoretical knowledge is not enough and hence a practical knowledge is necessary. Remote labs represent an attractive
solution to do experiments through online mode. Remote labs have been developed for the students to obtain this
practical knowledge without attending the real lab or, in some cases, to reduce the time devoted to do real practices.
Most of the remote labs focus on engineering lab as the engineering discipline contains the biggest portion of
laboratory studies. In other words, engineering is an applied science. Remote labs are becoming widely accepted in
universities and in the Institutions of higher learning for providing distance mode of education and for augmenting
traditional laboratories.

II. RELATED WORK

The Remote lab project is implemented in three parts: The first part is the Student Front End (User Interface), second
one is Back End Using Oracle and the third is connecting to remote computer using SOA. The user interface is
organized in such a way that the students Register with their full name, username, password and student id and enters in

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13694

to next level of Online Booking. By using booking table, the student can reserve in advance the time when they want to
execute remote experiments and can Login only in that reserved slot. At that particular time nobody else can access the
remote experiment. The Student needs to give Remote Ip address as Input to access lab desktop.
Accessing the lab desktop also requires web browser and an Internet connection. After logging in to the remote desktop
the student can practice Software programs. Each user interface contains a well defined set of actions, i.e. to Register,
to Block Date and Time and to Login. The Backend Database is implemented using Oracle SQL commands and
communicates with these actions. It Contains a Single Table tab which in turn consists of three other tables Sid , User
Details and Accounts . The First Table Sid stores student ids. The Purpose of this table is to allow the stored ids to have
permission to register and block strange ids. The security level is thus increased by this and no other third person can
have access. The Second Table User Details is used to store the values inserted in to the Register User Interface. It
stores and updates the values like Full name, Username and Password details. Third table Accounts stores Blocked
date, time and the random id given after registering. Another important feature of this remote lab is the management of
concurrent access to the same date by multiple users. The scheduling mechanism is strengthened by a proper locking
system that tracks the dates that are in use. When a student blocks date the scheduler checks if the dates are available. If
available the date and time along with the random id are given to the student and saved and updated in the database
Accounts. If not, it shows error.
The third part is the core of this project, connecting to Remote desktop using SOA. This part is implemented using Web
Services. The Axis server plays an important role in communicating between the client/student and the remote desktop.
This server is first installed in remote desktop computer. After installing the server a web service program is written
and deployed in to the axis server. The server must be started with the help of setting class path. This is explained in
detail under AXIS section. Now the student/client has to connect through login User Interface by giving username,
password, rid (random id), remote ip address and current Ip address. Then the connection will be established.

III. SERVICE ORIENTED ARCHITECTURE

Service-Oriented Architecture (SOA) is an evolution of distributed computing based on the request/reply design model
for synchronous and asynchronous applications. An application's business logic or individual functions are modularized
and presented as services for consumer/client applications. What's key to these services is their loosely coupled nature;
i.e., the service interface is independent of the implementation [3]. Application developers or system integrators can
build applications by composing one or more services without knowing the services' underlying implementations. For
example, a service can be implemented either in .Net or J2EE, and the application consuming the service can be on a
different platform or language. Service-oriented architectures have the following key characteristics:
1. SOA services have self-describing interfaces in platform-independent XML documents. Web Services Description
Language (WSDL) is the standard used to describe the services.
2. SOA services communicate with messages formally defined via XML Schema (also called XSD). Communication
among consumers and providers or services typically happens in mixed environments, with little or no knowledge
about the provider. Messages between services can be viewed as key business documents processed in an enterprise.
3. SOA services are maintained in the enterprise by a registry that acts as a directory listing. Applications can look up
the services in the registry and invoke the service. Universal Description, Definition, and Integration (UDDI) is the
standard used for service registry.
4. Each SOA service has a quality of service (QoS) associated with it. Some of the key QoS elements are security
requirements, such as authentication and authorization, reliable messaging, and policies regarding who can invoke
services.
The reality in IT enterprises is that infrastructure is heterogeneous across operating systems, applications, system
software, and application infrastructure. Some existing applications are used to run current business processes, so
starting from scratch to build new infrastructure isn't an option. Enterprises should quickly respond to business changes
with quickness; leverage existing investments in applications and application infrastructure to address newer business
requirements; support new channels of interactions with customers, partners, and suppliers; and feature an architecture
that supports organic business [3]. SOA with its loosely coupled nature allows enterprises to plug in new services or
upgrade existing services in a granular fashion to address the new business requirements, provides the option to make
the services consumable across different channels, and exposes the existing enterprise and legacy applications as
services, thereby safeguarding existing IT infrastructure investments.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13695

Figure 3.1 shows Detailed Service Architecture to implement SOA which enterprises need.

In Figure 3.2, several service consumers can invoke services by sending messages. These messages are typically
transformed and routed by a service bus to an appropriate service implementation. This service architecture can provide
a business rules engine that allows business rules to be incorporated in a service or across services. The service
architecture also provides a service management infrastructure that manages services and activities like auditing,
billing, and logging [6]. In addition, the architecture offers enterprises the flexibility of having agile business processes,
better addresses the regulatory, and changes individual services without affecting other services.

Figure 3.2 Service Architecture.

To run and manage SOA applications, enterprises need an SOA infrastructure that is part of the SOA platform. An
SOA infrastructure must support all the relevant standards and required runtime containers. A typical SOA
infrastructure looks like Figure 3.3. There is a general confusion about the relationship between SOA and Web
services. Fundamentally, SOA is an architectural pattern, while Web services are services implemented using a set of
standards; Web services is one of the ways you can implement SOA. The benefit of implementing SOA with Web
services is that you achieve a platform-neutral approach to accessing services and better interoperability as more and
more vendors support more and more Web services specifications [1].

Figure 3.3. SOA Infrastructure.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13696

A Service is a unit of work done by a service provider to achieve desired end results for a service consumer. It
represents a publicized package of functionality. Both service provider and service consumer are the roles played by
software agents on behalf of their owner. A service is Compose able and Discoverable
The actual use of service is often based upon an agreed-upon contract with the provider, including in detail what is
provided and what is the quality(availability, cost etc) of the service. SOA is an architectural style whose goal is to
achieve loose coupling among interacting software agents.SOA is a specific architectural style that is concerned with
loose coupling and dynamic binding between services. On the other hand, Web Services is an approach to realizing a
SOA. A software system designed to support interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-process able format (specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with XML
serialization in conjunction with other Web-related standards [4]. Web Services is the base for implementing SOA and
the Service bus is the centerpiece of this implementation. So Figure 3.4 shows the architecture of the Service Bus.

Figure 3.4 Architecture of Service Bus.

IV. WEB SERVICES

The Figure 4.1 shows Web Services Architecture. The bottom (transport) layer presents its capabilities to cope with
various transport protocols to communicate between a service and a requester. In case of web services you can transport
messages by using the ubiquitous Web protocols such as Hypertext Transport Protocol (HTTP) or Secure HTTP
(HTTPS) to give the widest possible coverage in terms of support for the protocols, you can also transport them over
any communications protocol.

Figure 4.1 Web Services Architecture

The messaging layer on top of the transport layer enables the bus to deal with messages, both XML and non-XML. The
latter is important, for example, if a requester and the service needed reside in the same J2EE application server and the
bus can simply transport the data in its Java rendering, avoiding unnecessary transformations. The messaging services

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13697

component of the framework contains the most fundamental Web services specifications and technologies, including
Extensible Markup Language (XML), SOAP, and WS-Addressing. Collectively, these specifications form the basis of
interoperable messaging between Web services. XML provides the interoperable format to describe message content
between Web services and is the basic language in which the Web services specifications are defined.
The next (description) layer of the bus facilitates and deals with the description of services in terms of functions
supported, quality of services of these functions, and supported binding mechanisms. This metadata is important, and it
is fundamental to achieving the loose coupling that is associated with an SOA viz. WSDL, WS-Policy
The actual quality of services that the bus enforces based on appropriate parameterization via polices resides in the
layer that follows. The specific issues involving this layer include security, reliability of message delivery, and support
for transactions. Likewise web Services provides WS-Reliable Messaging, WS-Security.
The top layer represents the various kinds of virtual components that Web services represent. This layer has atomic
services that are not composed as far as a requester’s experience with the service is concerned. Composite services that
the service bus inherently supports are choreographies and societies of services that cooperate following an agreement
protocol to decide on the success of the cooperation at the end of the cooperation.
Finally, another layer provides features for discovery of services and their descriptions and to agree on a mode of
interaction between a requester and a service. UDDI and META-DATA Exchange are the ways it is done using web
services.

V. IMPLEMENTING REMOTE LAB

The structure of the proposed remote lab access is shown in Figure 5.1. The system simply represents the remote lab
with single structure of a computer to interact with the student through the internet implemented with Service Oriented
Architecture. It consists of two sections, the student domain and the administrator domain. The student domain enables
the client in his place outside the lab to book date and time. After booking, the student is allowed to login on that
particular date to the remote lab to perform experiments. The second section, the administrator, adds and deletes
students, Reduces overlapping of booking dates, for setting up and defining date and time slots. There are three
Modules in this application. Student Front End, Back End Using oracle, Connecting to Remote Computer using SOA
and AXIS.

Figure 5.1 Remote Lab Structure

V.I STUDENT FRONT END

Front-end development is a relatively difficult to understand. Historically, this role has been known under several
names, html, web designer, coder, front ender and so on, but its core function remains the same. It is a center part that
requires both visual sensitivity and programmatic severity.A "front-end" application is one that users interact with
directly. Here in this remote lab application the front end user is the Student. The technologies that have been used to
develop front end are:

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13698

HTML (Hypertext Markup Language): HTML, the structure of the page is the foundation of remote lab application,
very important to place the document with the right hooks for the classes and the ids that will provide the style and the
interaction that the reader will ultimately use.HTML allows images and objects to be embedded and can be used to
create interactive forms. It provides a means to create structured documents by denoting structural semantics for text
such as headings, paragraphs, lists, links, quotes and other items. It can embed scripts in languages such as JavaScript
which affect the behavior of HTML WebPages.
Cascading Style Sheets: Css, cascading style sheets, a core functionality of front-end development, the styles that lay
out the page and give it both its unique visual style and a clear, user-friendly view to allow students, who don’t have
technical knowledge, some help to read the contents quickly. Design means both how something looks and how
something is structured, and in a good design, both come together. An important aspect of styling is checking across
several browsers and to write short code that is specific yet generic at the same time and displays well in as many
renderers as possible.
Cross-Browser : The browser on your computer is to remain the most advanced and feature-rich client application to
access the web for a long time Since the browser wars between Netscape and Internet Explorer on PCs, much has
happened. Nowadays, browsers compete with each other for page-rendering speed, plug-ins and add-ons to achieve
both a lean and comprehensive browser experience.
Programming: The programming for front end in remote lab uses Servlets and JavaScript. A servlet is a Java
programming language class used to extend the capabilities of servers that host applications access via a request-
response programming model. Although servlets can respond to any type of request, they are commonly used to extend
the applications hosted by Web servers. JavaScript has fully grown up from inline commands embedded in html to full-
blown asynchronous applications executed on the fly on the browser as unobtrusive rich functionality. The widespread
usage of java script libraries has produced a excess, of visual effects that turn web pages into a more three-dimensional
immersive experience.

V.II BACK END USING ORACLE
A back-end application or program serves indirectly in support of the front-end services, usually by being closer to the
required resource or having the capability to communicate with the required resource. The back-end application
interacts directly with the front-end. This remote lab application uses Oracle as its Back end. The bridge between the
front end and back end database is done using drivers. This is referred to as JDBC-ODBC connection. Here, Backend
database connection uses Type IV driver (Oracle thin driver).
Install oracle. Run SQL command line in Oracle. Connect with Username and Password. In this, Database has a single
table Tab which in turn consists of three other tables User details table, whenever a student registers with full name,
username and password values they are automatically inserted in to database. Accounts table, Whenever a student
books date and time they are inserted in to database and a random id (rid) is given after booking. Sid table , only these
students are allowed to login in to remote lab. Other than these students id’s the system gives error. Figures 5.1, 5.2
shows snapshot of Database Tables.

Figure 5.1 Snapshot of Back end Tables tab, UserDetails and Accounts

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13699

Figure 5.2 Snapshot of Back end Table Sid

V.III CONNECTING TO REMOTE COMPUTER USING SOA AND AXIS

The figure 5.3 shows Building Blocks for delivering Service Oriented Architecture implemented with Web Services
[4].

Figure 5.3. Building Blocks for delivering Service Oriented Architecture implemented with Web.

XML: It is a Markup language composed of tags and data, Elements and Attributes. Read by an XML processor.
Requires Grammar Definition, Valid and well formed.XML Name Spaces gives Global Naming Mechanism for XML,
Qualified names: Prefix and local parts, Multiple Name spaces in same document . XML Schema Provides grammar for
XML instance docs, Built in types and Simple and Complex custom data types.
SOAP: Simple Object Access Protocol (SOAP) is a light weight protocol for exchange of information in a
decentralized, distributed environment. It is an XML based protocol that consists of three parts: an envelope that
defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing
instances of application defined data-types, and a convention for representing remote procedure calls and responses.
 WSDL: Web Services Description Language (WSDL) is an XML format for describing network services as a set of
endpoints operating on messages, containing either document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then bound to a concrete network protocol and message format to
define an endpoint.
 UDDI: Discovery and Integration (UDDI) is a directory service where providers can register and clients search for
Web services. Universal Description, Discovery, and Integration (UDDI) provides the definition of a set of services
supporting the description and discovery of businesses, organizations, and other Web Services providers, the Web
Services they make available, and the technical interfaces which may be used to access those services. The idea is to
"discover" organizations and the services that organizations offer, much like using a phone book or dialing information.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13700

JAVA AND WEB SERVICES: Java Web Services uses the find-bind-invoke paradigm as shown in Figure 5.4. In this
paradigm, service providers register their service in a public registry. This registry is used by consumers to find
services that match certain criteria. If the registry has such a service, it provides the consumer with a contract and an
endpoint address for that service.

Figure 5.4 Java Web services architecture – logical and process view

TOMCAT: Apache Tomcat is an open source web server and servlet container developed by the Apache Software
Foundation (ASF). Tomcat implements the Java Servlet and the Java Server Pages (JSP) specifications from Oracle
Corporation, and provides a "pure Java" HTTP web server environment for Java code to run.

Remote Lab uses Apache Tomcat as its web server. The Client end application is run and tested in tomcat. The port
number used here is 9090. Figures 5.6 show that the Application Remote Desktop is copied and pasted in Webapps
folder of Apache Tomcat and viewed in Tomcat Web Server.

Figure 5.6 Snapshot of RemoteDesktop folder in Apache Tomcat Web Server

AXIS: AXIS stands for Apache Extensible Interaction System. It is an open-source project and implements standard
JAX-RPC API of Java. AXIS is SOAP engine which works on server and client. It allows Java classes to be deployed
as Web services so that they can be accessed from anywhere.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13701

It acts as a simple stand-alone server, A server that plugs into Servlet engines such as Tomcat and gives an extensive
support for the Web Services Description Language (WSDL).It is also used as an Emitter tooling that generates Java
classes from WSDL and a tool for monitoring TCP/IP packets. The features of axis include:

 Speed: Axis uses SAX (event-based) parsing to achieve significantly greater speed than earlier versions of
Apache SOAP.

 Flexibility: The Axis architecture gives the developer complete freedom to insert extensions into the engine
for custom header processing, system management, or anything else you can imagine.

 Stability: Axis defines a set of published interfaces which change relatively slowly compared to the rest of
Axis.

 Component-oriented deployment: You can easily define reusable networks of Handlers to implement
common patterns of processing for your applications, or to distribute to partners.

 Transport framework: A clean and simple abstraction for designing transports (i.e., senders and listeners for
SOAP over various protocols such as SMTP, FTP, message-oriented middleware, etc), and the core of the
engine is completely transport-independent.

 WSDL support: Axis supports the Web Service Description Language, version 1.1, which allows you to
easily build stubs to access remote services, and also to automatically export machine-readable descriptions of
your deployed services from Axis.

IMPLEMENTING AND DEPLOYING WEB SERVICES IN AXIS: Install apache axis in any folder. Build a
Remote lab Web Service with a normal Java class that provides the Web Service implementation methods and a Web
Services Deployment Descriptor (WSDD). Figure 5.8 shows how to start Axis Server. A java client program is written
and compiled using ClientInitiator.java in order to connect to the axis server. Writing a Deploy.wsdd (web service
deployment descriptor) file . The deployment descriptor provides three key pieces of information. The name of the
Web Service, Class that implements the Web Services and the Methods in the class that we want Axis to expose. The
class file (ClientInitiator.class) generated after compiling ClientInitiator.java is cut and pasted in to another folder
remoteclient. In order to integrate wsdd file in to axis, setting class path and Compiling client program. Start java org.
apache.axis.transport.http. SimpleAxisServer– p 65535 java org.apache.axis.client.AdminClient-p 65535
deploy.wsd. The web service has been deployed in to axis server and successfully running. The student can login in
his/her booked slot by giving the remote ip address and clicking connect as shown in figure 5.7.

Figure 5.7 Snapshot of Connection

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13702

Figure 5.8 Snapshot of Starting Web Service in Axis Server

VI. CONCLUSION AND FUTURE WORK

In this project work, a new methodology is described for implementing remote lab. This proposal allows the student to
do programming from any place with Internet access. The validation of the use of remote lab is compared with the
traditional method of students physically attending to the lab. Results show a great dissimilarity between both which
concludes that remote lab is more useful to students than the traditional methods and gives support to the students who
actually face different problems and also useful for a student in saving time and energy. The Present work also explains
how Remote lab is developed using Service Oriented Architecture with the help of Web Services and the reasons for
why this method has been used. Developers can implement this application more easily because different technologies
and execution platforms can easily be communicated through SOA method. There is a lot of scope for Service Oriented
Architecture applications, as there is an increasing demand for cloud computing in the near future. This remote lab
application is limited to students practicing programming languages and software side applications. It can be further
developed to a next level where students can practice on physical equipments similarly as above.

REFERENCES

1. Binildas A. Christudas, Malhar Barai & Vincenzo Caselli; “Service Oriented Architecture with Java: Using SOA and web services to build

powerful Java applications”, Packt Publishing ltd, Birmingham, 2008.
2. Chen.S.H, Chen.R, Ramakrishnan.V & others; “Chen.S.H,Chen.R, Ramakrishnan.V & others; “Development of Remote Laborator

Experimentation through Internet”, blog, 2008; http://discoverlab.com/References/vlabhksrc99.doc.
3. Debu Panda; “An Introduction to Service-Oriented Architecture from a Java Developer Perspective”, blog, 2005;

http://onjava.com/pub/a/onjava/2005/01/26/soa-intro.html?page=1.
4. EdOrt ; “Service-Oriented Architecture and Web Services: Concepts, Technologies, and Tools”, blog, 2005; http:// java.sun.com/ developer/

technicalArticles/ WebServices/ soa2/.
5. Elio Sancristobal, Manuel Castro, Sergio Martin and others; “Remote Labs as Learning Services in the Educational Arena”; http://www.

psut.edu.jo / sites/ EDUCON/ program/ contribution1481_b.pdf, blog, 2010.
6. Manoj Mansukhani ; “Service Oriented Architecture White Paper”, ftp://www.compaq.fr/pub/services/spotlight/info/soa_wp_062005.pdf, blog,

2005.
7. S. Uran, D. Hercog and K. Jezernik; “Remote Lab Experiment RC Oscillator for Learning of Control”,

www.slideshare.net/avinashpathak/telelab-2 - United States, blog, 2010.

http://discoverlab.com/References/vlabhksrc99.doc.
http://onjava.com/pub/a/onjava/2005/01/26/soa-intro.html?page=1.
http://
http://www.
ftp://www.compaq.fr/pub/services/spotlight/info/soa_wp_062005.pdf,
http://www.slideshare.net/avinashpathak/telelab-2

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 7, July 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0407117 13703

8. Grace A. Lewis, Dennis B. Smith, Kostas Kontogiannis; “A Research Agenda for Service-Oriented Architecture (SOA): Maintenance and
Evolution of Service-Oriented Systems, Research, Technology, and System Solutions Program, March 2010.

9. Qusay H. Mahmoud, “Service-Oriented Architecture (SOA) and Web Services: The Road to Enterprise Application Integration (EAI)” ,
Oracle Technology Network, April 2005.

10. Liang-jie , Zhang, “Web Services research for Emerging Applications: Discoveries and trends”, feb 28,2010.
11. Eric J. Bruno, “ SOA, web services, and restful systems” , June 8 2007 .

 BIOGRAPHY

T.V.Lakshmi Sukrutha is an Assistant Professor in Computer Science Engineering Department, Methodist College Of
Engineering and Technology, Hyderabad, Telangana, India. She has received Masters Degree in Computer Science
Engineering in 2012 from Jawaharlal Nehru Technological University, Hyderabad, Telangana, India. Her research
interests are Web Programming Services, Service Oriented Architecture, Principles of Programming Languages, Cloud
Computing, and Computer Organization.

