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ABSTRACT: Long running multiprocessor scientific applications are often subject to failures. A failure means loss of 
computation, sometimes significant. But all failures cannot be treated alike. Failures can be classified in many ways, 
for example, they can be classified into failures affecting one processor, multiple processors and system as a whole. 
Alternatively, they can be classified as transient and permanent failures. Another way to classify failures is as less-
probable and high-probable failures. Irrespective of classification method, failures can be characterised by two aspects: 
impact intensity and occurrence frequency. 
This paper introduces a three level coordinated checkpointing scheme, we call it VLG checkpointing scheme for 
multiprocessor and distributed systems. This three level VLG recovery scheme tolerates failures with less average 
performance overhead by considering above two aspects of failures. 
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I. INTRODUCTION 
 

Mean time between failures (MTBF) of a multiprocessor or distributedsystem is considerably lower than a normal 
workstation, this means that a long running parallel or distributed application may encounter more failures during its 
execution. In absence of a failure recovery scheme, the application must be restarted from beginning whenever a failure 
occurs leading to unacceptable performance overhead. Thus, a fault tolerance provision is desirable that allow such 
applicationsto recover from failures to minimize loss of computation. Checkpointing is a method used bysuch 
applications to save their computational state at regular intervals on a stable storage, so that they may be restarted after 
interruptions without losing their computational progress [5]. However all such schemes are designed to tolerate 
arbitrary number of failures this means that all such recovery schemes treat all failures in the same way i.e. they treat 
entire system as faulty or fault-free, without consideration their characteristics except [3] where a two level recovery 
scheme is proposed. 

Coordinated checkpointing algorithms are of two types: blocking and non-blocking [12,13, 14]. Blocking 
algorithms force all processes in the cluster computing system to block their computation during synchronization and 
checkpointing. In non-blocking algorithms, application processes are not blocked during synchronization. In non-
blocking algorithms, although all processes are involved in creating the consistent global checkpointing state, processes 
are not firmly synchronized. In this scheme, in-transit and orphan messages may exist in the communication channel at 
the time the checkpoint is taken. However, processes employ message log to manage these messages and thus to 
guarantee that the checkpoint sets are consistent. Upon failure, the recovery of non-blocking coordination is more 
complicated than blocking coordination because not only the process needs to be restored, but also the communication 
channel should be recovered to the same state as the checkpoints were taken. 

The Performance overhead of a recovery scheme is the increase in the execution time of the application when 
using a recovery scheme [2]. The performance overhead of a recovery scheme consists of two components:  
1. Overhead during failure-free operation (failure-free overhead), e.g., checkpointing time and message logging. 
2. Overhead during recovery (recovery overhead). 

The design concept “make most frequent case fast” has been successfully used in designing many components of a 
computer system [6]  and some aspects of fault tolerance [7, 8, 9, 10]. However, most distributed failure recovery 
schemes have ignored this advice. In any system, some failures have greater occurrence frequency as compared to other 
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Figure 1 

failures [2,4] causing partial (e.g. single processor) and total system failure.Most existing recovery schemes are 
identicalin the sense that they are designed to tolerate the worst case failure scenario i.e. they treat all failure alike, for 
example, the traditional implementations of consistent checkpointing algorithms are designed to tolerate total system 
failure [11]. 

But the design concept “most frequent case fast” suggests that a recovery scheme should provide lowoverhead 
protection against more probable failures, providing protection against other failures with possibly higher overhead.  

An important parameter to reduce the coordinated checkpointing overhead is checkpointing frequency. If 
checkpoints are frequently taken, a larger overhead due to checkpointing will be incurred. Conversely, if checkpoints 
are taken too infrequently, a larger recovery overhead after system failures will be required. 

Checkpoint frequency hasa direct effect on overhead if all failures are treated alike, it can be demonstrated [6] 
that the checkpoint frequency impacts more on the performance than the number of nodes involved in a checkpoint 
synchronization for both non-blocking and blocking schemes. 

We propose a three-level approach to reduce the average performance overhead of failure recovery for long 
running applications by considering failure occurrence frequency and thus checkpoint frequency asthe critical 
parameter. 

 
II. SYSTEM MODEL 

 
Our computing model consists of N computing nodes as shown in Fig 1. Each computing node has a processor 

(so a processor or computing node are same), memory and a local disk. All the computing nodes in the system are 
identical. The computing nodes share a stable storage that can be accessed over the network. Each processor executes 
one process of a distributed application, therefore, a processor failure is synonymous with process failure. Computing 
nodes do not share a common memory or a common clock and message passing is the only way for nodes to 
communicate with each other. Messages are exchanged through reliable communication channels, whose transmission 
delays are finite but arbitrary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. FAILURE MODEL 
 

Failures in computer systems are usually classified into two types [14, 15,16]: (a) transient failure and (b) 
permanent failure. Transient failures include both soft errors (transient faults) in semiconductor devices [15,17,18] 
(e.g., memory or register bit errors, memory, and CPU transient bit-flip) and recoverable errors in other devices (e.g., 
disk read retries). Permanent failure or hardware failures [15, 19] are permanent physical defects whose repair normally 
requires component replacement, for example, a power supply or fan failure, permanent stuck-at faults in memory, 
permanent stuck-at faults in CPU registers, hard disk mechanical failures).  
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The stable storage is assumed to be always failure-free. We only consider fail-stop failures of processors and 
local disks, Byzantine failures are not covered by our scheme. A processor is subject to transient as well as permanent 
failures. Transient failure of a processor results in the loss of its volatile memory contents; however, it does not cause a 
failure of its local disk. Thus, the checkpoints saved either in neighbours’ volatile memory or its own local disk can be 
used to survive transient processor failure because in the case of a transient processor failure, the local disk of the faulty 
processor or neighbour’s volatile memory becomes accessible once the processor comes back up after failure. 
However, the neighbour node of the failed node can also fail (processor or disk), in this case, it is not possible to 
recover from transient processor failure using memory based checkpoint but local disk and remote stable storage can be 
used. It can be noted that, in order to access the neighbour’s volatile memory or its own local disk, the node’s processor 
itself must be operational, so a permanent processor failure of a node cannot be recovered without using stable storage. 
 We assume that failure of a local disk always crashes the associated processor since local disk of a workstation 
often stores swapped out process memory, temporary files accessed by an application, as well as many files that are 
accessed by the operating system. 

So we can say that a permanent failure (processor or disk) always crashes the associated computing node.  
We assume failures of multiple processors are independent of each other; similarly, the local disk failures are 

independent. 
 

IV. VLG CHECKPOINTING SCHEME 
 

Since there are three levels of failures as per their occurrence frequency: Soft transient failures hasthe highest 
frequency of occurrence. Recoverable transient failures has medium frequency of occurrence. Permanent failurehas the 
least frequency of occurrence, we propose three types of checkpoints namely: V-Checkpoint, L-Checkpoint, and G-
checkpoint.  

V-checkpoint is created by a single processor (node) by saving its state in neighbour’s volatile memory.The 
cost (failure-free checkpoint overhead) is CV and checkpointing interval is TV. 

L-checkpoint is created by taking a checkpoint by all processors (nodes) simultaneously in a blocking 
coordinated mannerby saving its state in local disk. The cost for L-checkpoint is CL and checkpointing interval is TL. 

G-checkpoint is created by taking a checkpoint by all processors (nodes) simultaneously in a blocking 
coordinated manner but this time not only saving it in local disk but also sending this checkpoint to remote stable 
storage. The cost for G-checkpoint is CG and checkpointing interval is TG. 
We assume that processes take equidistant checkpoints i.e. every Kth checkpoint is L-checkpoint and every Nth 
checkpoint is G-checkpoint. So, TL = K x TV and TG = N x TV = (N/K) TL. 
It can be said that CV<CL<CGand TV<TL<TGbecause of three reasons:  
1. Blocking coordinated checkpointing, congest network (to access remote stable storage) besides accessing the same 

stable storage and 
2. Network and memory bandwidths are faster than the bandwidth of storage systems (local disk and stable storage). 
3. Soft transient failures has the highest frequency of occurrence, recoverable transient failures, has medium frequency 

of occurrence, permanent failure has the least frequency of occurrence 
It is noted that L-checkpoint and G-checkpoint are consistent but V-checkpoint may not. 
 

V. VLG RECOVERY SCHEME 
 

It is obvious that V-checkpoint is used to recover from most frequent failures, L-checkpoint is used to recover from 
medium frequent failures and G-checkpoint is used to recover from least frequent failures. Possible cases of recovery 
using VLG scheme are discussed below. 

I. Usage of V-Checkpoint: 
Case A: Single processor transient failure 

Single processor transient failure due to soft transient errorscan be recovered by rolling back   faulty processor 
its last V-checkpoint. Since V-checkpoint is not consistent, the messages that the faulty process had received after the 
V-checkpoint and before failure,are resent in the appropriate order by the senders as these messages and order 
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information are available in the volatile memory of message senders. In case the last V-checkpoint is not nearest 
checkpoint (an L-checkpoint is taken after V-checkpoint), then nearest L-checkpoint can also be used. 
 
Case B: Multiprocessor transient failure  

1. If the same processor fails again during recovery, then recovery is reinitiated.  
2. If, however, another processor fails before faulty recovers from the first failure, then there are three possibilities:  

a. If the two faulty processors did not exchange any messages since their previous V-checkpoint (because 
senders need to resend messages), then the two simultaneous failures can be recovered by rolling back faulty 
processorsto their respective V-checkpoints.  
 

b. If a processor and its neighbour (where its V-checkpoint is stored) both failed simultaneously (simultaneous 
failure includes, a processor failed during the recovery of another processor), then V-checkpoint cannot be 
used for recovery. 
 

c. If two failed processor exchanged messages since their last V-checkpoints, then V-checkpoints cannot be used 
for recovery. 

 
II. Usage of L-Checkpoint: 

Case A: Single processor transient failure 
Single processor failure because of soft and recoverable transient errors can be recovered by rolling back each 

processorto last L-checkpoint only when the nearest checkpoint is not V-checkpoint. Since L-checkpoint is consistent, 
the messages logging is not required. 
Case B: Multiprocessor transient failure  
1. If a processor and its neighbour (where its V-checkpoint is stored) both failed simultaneously (simultaneous failure 

includes, a processor failed during the recovery of another processor), then L-checkpoint can be used to recover by 
having each processor rollback to their last L-checkpoint. 
 

2. L-checkpoint can be used to recover from all simultaneous failures even if the two faulty processors exchanged 
messages by rolling back each processor to the last L-checkpoint. 
It is possible to use V-checkpoint with some encoding techniques to recover from simultaneous failures but such 

encoding techniques are highly time and memory consuming[6]. 
III. Usage of G-Checkpoint: 

The G-checkpoint can be used to recover from all permanent failures (processor and disk) including catastrophic 
system failure. G-checkpoint can be used to recover from transient failure as well but V-checkpoint and L-checkpoint 
are having less cost compared to G-checkpoint for transient failures.  
 

VI. CONCLUSION AND FUTURE WORK 
 

This paper illustrates a three level VLG checkpointing scheme for recovery in multiprocessor and distributed 
systems by establishing a connection between checkpointing overhead and occurrence frequency of failures to 
minimize average performance overhead. 

As per [2,3], for multiple transient failures, recovery is done by rolling back to G-checkpoint but our scheme never 
rollbacks to G-checkpoint for transient failures. 

Although the VLG checkpointing scheme looks promising but a formal analysis needs to be done in order to 
determine the optimal value of TV and to find K for TL and N for TG. 

We considered equidistant checkpointing schedule. It would be motivating to examine VLG checkpointing scheme 
with an alternative checkpointing schedule, for example, let V-checkpoints need not be equidistant. 

Our approach considers average performance overhead as metric. It would be interesting to evaluate the 
effectivenessof our scheme with respect to other metrics, for example,the probability of meeting a givendeadline. 

Further, our VLG recovery scheme can be studied with various encoding schemes for V-checkpoint. 
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