

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 7, July 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307082 6738

A Study on Hybrid Scheduling for
Homogeneous Multicore Architecture

Vinuta A Patil

Assistant Professor, Dept. of CSE, SJBIT, Bangalore, Karnataka, India

ABSTRACT: This paper proposes a study on different scheduling algorithms used to schedule processes to different
processors in a system and gives advantage of using hybrid scheduling algorithm over other algorithms.
Multiprogramming computer systems execute multiple programs concurrently .In a multiprogramming environment the
main objective is to share a resource efficiently in a system and to do this a hybrid scheduling algorithm is more
effective compare to other algorithms. This paper is a study on hybrid scheduling for real time and non-real time
applications running parallelly over a homogeneous multicore architecture.

KEYWORDS: multiprogramming, scheduling, multicore

I. INTRODUCTION

Scheduling is a process of assigning a different PCB (Process Control Block) of a processes to a processor. Scheduling
is a fundamental function of an operating system. In this paper we are considering a hybrid scheduling for scheduling
the different tasks of an application, that application can be a real time or non-real time.

Hybrid scheduling uses two level scheduling policy. In the top level a spordiac server is used which implements all the
different scheduling algorithms for a different tasks of an application.At the bottom level rate monotonic OS scheduler
is implemented.

In this paper we study a hybrid scheduling algorithm to be implemented on multicore processors. A multicore processor
combines two or more independent cores in a single Integrated Circuit(IC) chip.

All these multicores may share a single cache or cores may have its own cache .In order to improve the performance a
parallelism should be implemented and a concept of multithreading has to be implemented between the cores

The rest of the paper is structured as follows: Section II discusses a different scheduling algorithm. Section III
discusses task model .Section IV discusses architecture of a hybrid scheduling. Section V discusses a load balancing
algorithm. Finally in section VI some concluding remarks are made.

.
II. SCHEDULING ALGORITHMS

There are different scheduling algorithms [1, 2, 3] implemented to schedule the different tasks in an application. In this
section we study those algorithms as well as compare them with each other.

A. First Come First Served Scheduling Algorithm (FCFS)

FCFS is the simplest scheduling algorithm. For this algorithm the ready queue is maintained as a FIFO queue. A
PCB (Process Control Block) of a process submitted to the system is linked to the tail of the queue. The algorithm
dispatches processes from the head of the ready queue for execution by the CPU. When a process has completed its
task it terminates and is deleted from the system. The next process is then dispatched from the head of the ready queue.

B. Shortest Job First Scheduling Algorithm (SJF)

For this algorithm the ready queue is maintained in order of CPU burst length, with the shortest burst length at the

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 7, July 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307082 6739

head of the queue. A PCB of a process submitted to the system is linked to the queue in accordance with its CPU burst
length. The algorithm dispatches processes from the head of the ready queue for execution by the CPU. When a
process has completed its task it terminates and is deleted from the system. The next process is then dispatched from
the head of the ready queue.

C. Shortest Remaining Time First Scheduling Algorithm (SRTF)
For this algorithm the ready queue is maintained in order of CPU burst length, with the shortest burst length at the head
of the queue. A PCB of a process submitted to the system has its CPU burst length compared with the remaining time
of the PCB being executed. If the newprocess requires less time than that remaining of the ‘active’ process then
preemption occurs and it becomes the new PCB’s turn for execution, otherwise it is linked to the queue in accordance
with its CPU burst length. The algorithm dispatches processes from the head of the ready queue for execution by the
CPU. When a process has completed its task it terminates and is deleted from the system. The next process is then
dispatched from the head of the ready queue.

D. Round Robin Scheduling Algorithm (RR)

For this algorithm the ready queue is maintained as a FIFO queue. A PCB of a process submitted to the system is
linked to the tail of the queue. The algorithm dispatches processes from the head of the ready queue for execution by
the CPU. Processes being executed are pre-empted on expiry of a time quantum, which is a system-defined variable. A
pre-empted process’s PCB is linked to the tail of the ready queue. When a process has completed its task, i.e. before the
expiry of the time quantum, it terminates and is deleted from the system. The next process is then dispatched from the
head of the ready queue.

E. Priority Scheduling Algorithm

For this algorithm the ready queue is maintained in the order of system-defined priorities. A PCB of a process
submitted to the system is linked to the last PCB in the queue having the same or a higher priority. The algorithm
dispatches processes from the head of the ready queue for execution by the CPU. When a process has completed its
task it terminates and is deleted from the system. The next process is then dispatched from the head of the ready queue.

F. Hybrid Scheduling Algorithm

 This algorithm uses two level scheduling policy. In the top level a spordiac server algorithm is implemented for
all the tasks of an application program. Each spordiac server will have its own scheduling algorithm. At the bottom
level a rate monotonic OS scheduler is implemented to schedule top level spordiac servers

The authors of [4] have used several simulators for the performance evaluation of all the algorithms and proved

that Hybrid scheduling works well from a system perspective as it gives minimum Average Waiting Time and
Minimum Turnaround Time.Hybrid scheduling algorithm is well suited for multicore architecture.

III.TASK MODEL

Task model in [5] is summarized as follows:
Real time application A(r, d) is characterized by a release time r and a relative deadline d. Each real time task is
characterized by T(r, c,e,l,d) where r is release time, c is computation time, e is earliest start time, l is latest start time
and d is relative deadline. The release time and computation time is known at the release time of its application .The
earliest start time, the latest start time andrelative deadlines are computed according to precedence relationship
between tasks.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 7, July 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307082 6740

IV. ARCHITECTURE OF A HYBRID SCHEDULING MODEL

The authors in [3] have explained the architecture of a hybrid scheduling model and it is as shown

fig1: Scheduling architecture in processing core

The workload in the real-time system consists of real-time (hard and soft) and non-real-time tasks. In each

processing core, there are several sporadic servers with a CPU budget c and a period p at the top level. Each sporadic
server is associated with a ready queue contains ready tasks to run on the server. Each server has a scheduler associated
with it. The server scheduler uses a scheduling algorithm, such as EDF or RM or time sharing algorithm, to schedule
tasks and order tasks in the ready queue of sporadic server. All the real-time tasks with the earliest deadline first (EDF)
algorithm are executed on the sporadic server SEDF, all the real-time tasks with the rate monotonic (RM) algorithm are
executed on the sporadic server SRM, and so on. In addition, all the non-real-time tasks, which adopt the time sharing
scheduling policy, are executed on the sporadic server STS.

At the bottom level, there is a fixed-priority driven scheduler (RM scheduler) called the operating system scheduler,

which is adopted to maintain all the top level sporadic servers.

V. LOAD BALANCING ALGORITHM

Since we are using multicore architecture the load on processing cores should be balanced for a better performance.
Hence we make use of load balancing algorithms. The authors of paper [3] use a load balancing algorithms which has
two sub algorithms: Most-Demand-First Algorithm (MDFA) and Idlest-Fit Algorithm (IFA). The main idea of MDFA
is that the task with the most CPU utilization demand is allocated first,and the tasks in an application are sorted in the
decreasing order of their reserved CPU utilizations. The idea of IFA is that theprocessing cores are sorted in the
decreasing order of their available CPU capacity, and the idlest processing core is always searched first when an
allocation decision is made.

The steps of MDFA and IFA as proposed in paper [3] are as follows:

Step 1 Sort the tasks in the just submitted application Ax in the decreasing order of their reserved CPU

utilizations.

Step 2 Sort the processing cores in the decreasing order of their available CPU utilization capacities.

Step 3 Compare the reserved CPU utilization u of the first task with the available CPU utilization capacity C of

the first processing core. If u≤C, do schedulability test, or reject the application Ax and end the allocation
for the application Ax. If the task is schedulable, pre-allocate the task to the processing core and go to step
2, or reject the application Ax and end the allocation for the application Ax.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 7, July 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015. 0307082 6741

VI. CONCLUSION

This paper is a study of different scheduling algorithms and the advantages of using hybrid scheduling in multicore

architecture, which allows real time application to run with non real time applications concurrently and supports
parallelism among tasks within an application. In this paper load balancing algorithm is discussed which is used to
balance the load among the different cores which are homogeneous.

REFERENCES

[1]. A. Silberschatz, P. B. Galvin, G. Gagne, “Operating System Concepts”, 7th ed., John Wiley & Sons, 2005.
 [2] Milan Milenkovic, “Operating System Concepts and Design”, Second Edition McGraw Hill International, 1992.
[3]. PengliuTan,Jian Shu and Zhenhua Wu “A hybrid real-time scheduling approach on multi-core architectures” , vol. 5, no. 9, september 2010.
[4]. Syed Nasir Mehmood Shah, Ahmad Kamil Bin Mahmood, Alan Oxley”hybrid scheduling and dual queue scheduling”978-1-4244-4520-2,2009
IEEE
[5] Gopalakrishnan T R Nair ,Research Associate, Real Time Systems Group ,RIIc,Sr.Lecturer, toce,”critical task re-assignment under hybrid
scheduling approach in multiprocessor real time systems”

BIOGRAPHY

VINUTA A PATIL is working as Assistant professor in the department of Computer science and engineering, SJBIT,
BANGALORE, Karnataka, India

