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ABSTRACT: This research paper introduces and explores the Generalized Half-Cauchy (GHC) Model as a novel 
model for actuarial loss analysis. The GHC Model is a three-parameter extension of the Half-Cauchy Model, offering 
increased flexibility for modeling positively skewed data with unimodal hazard functions. We present both classical 
and Bayesian analyses of the GHC Model, including maximum likelihood estimation (MLE), Bayesian model 
formulation, and posterior analysis. All computational tools are developed in OpenBUGS and R software. A real data 
set is considered for illustration of the proposed Bayesian approach. 
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I. INTRODUCTION 

Over the past few years, there has been a growing interest in developing new families of probability 
distributions/models to expand well-established models and enhance their flexibility in practical data modeling. This 
pursuit has led to the exploration of various techniques to augment existing distributions by introducing additional 
parameters. A significant focus has been directed towards finding distributions that accurately capture the 
characteristics of medical survival data, which often exhibit positive skewness and a unimodal hazard function. 

In this context, several models such as Log-logistic[1], Lognormal[2], Birnbaum-Saunders[3], Arctangent 
Survival[4], Generalized Weibull [5], Weibull Extension[6] and Inverse Gaussian[8] have been employed to describe 
medical survival data. The study also proposes the Generalized Half-Cauchy (GHC) model [9-14], a three-parameter 
extension of the Half-Cauchy model. The GHC model offers enhanced flexibility for modeling data with a thicker right 
tail, making it well-suited for positively skewed datasets. The distribution's unimodal hazard shape suggests its 
applicability in modeling survival data that demonstrates initially increasing and subsequently decreasing death rates. 

The remainder of this paper is organized as follows: Section 2 delves into the Model Analysis, providing a detailed 
discussion of the cumulative distribution function, probability density function, reliability/survival function, hazard rate 
function, quantile function, and random deviate generation for the GHC model. Section 3 focuses on Maximum 
Likelihood Estimation (MLE) and the Information Matrix, presenting the log-likelihood function, its differentiation for 
MLE computation, and the Fisher's information matrix. Section 4 outlines the Bayesian Model Formulation, specifying 
the probability model, prior distributions, and the data used in the analysis. The Gibbs Sampler implementation for 
GHC model is detailed, along with the steps for obtaining posterior samples. Section 5 explores the Data Analysis, 
including the computation of MLE, model validation through Kolmogorov-Smirnov distance, and graphical methods 
such as Quantile-Quantile (QQ) and Probability-Probability (PP) plots. Bayesian analysis results, convergence 
diagnostics, and a comparison with MLE are also presented in this section. Additionally, the estimation of hazard and 
reliability functions, model compatibility assessment through posterior predictive checks, and the conclusion of the 
study are discussed. Finally, Section 6 concludes the paper by summarizing key findings and suggesting avenues. 

II. MODEL DEFINITION AND PROPERTIES 

The GHC model is formally defined, and its probability density function (PDF), cumulative distribution function 
(CDF), reliability/survival function, and hazard rate function are derived.  

Cumulative distribution function(cdf): 
The distribution function of Generalized Half Cauchy model with three parameters is given by 

 12
( ; , , ) 1 1 tan

x
F x


  

 


       
   

 

where  ,   and   are the parameters. The Generalized Half Cauchy model will be denoted by ( , , )GHC    .  
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Probability density function(pdf): 
The probability density function is given by 
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where   ( , , )> 0 and 0x    . 

 

Fig 1    The pdf of GHC model for 1   and different 

values of. and  . 

Some of the typical GHC density functions for different values of and   for 1   are depicted in Fig 1, which 

shows that the density function of the GHC model can take different shapes. 

The Reliability/Survival function(sf): 
The reliability/survival function is 

12
( ; , , ) 1 tan
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The hazard rate function(hrf): 
The hazard rate function is 
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Fig 2    The hrf of GHC model for 1   and 
different values of. and  . 

Some of the typical GHC hazard functions for different values of and   for 1   are depicted in Fig 2, which 

shows that the hazard function of the GHC model can take different shapes including the unimodel (upside down 
bathtub).  

The Quantile function: 

The quantile function is given by 

  
1

1
tan 1 1 ;0 1.

2
px p p


           

(5) 

The random deviate generation: 

 The random deviate can be generated from ( , , )GHC     by 

  
1

1
tan 1 1 ;0 1.

2
x u u


           

 

Where u has the (0,1)U  distribution.  
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We develop some R functions for the computation of pdf, cdf, reliability/survival function, hrf, quantile function and 
random deviate function respectively. 
For model choice based on information criterion, the values of AIC and BIC can be computed. This computation are 
done by the R function abic.aks.ghc() which is developed [15]. 

III.    DATA ANALYSIS 

The real data set represents the remission times (in months) of a random sample of 128 bladder cancer patients, [16] is 
considered for illustration of the proposed methodology. MLE and Bayesian analyses are performed on the data, 
showcasing the practical application of the GHC model in actuarial loss modelling. 

Classical Analysis: 
The classical analysis section focuses on the estimation of model parameters using maximum likelihood estimation 
(MLE). The log-likelihood function is presented, and numerical methods, such as the Newton-Raphson iterative 
technique, are employed for parameter estimation. Model fit is assessed using the Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC)[17]. 

In this section, we discuss the maximum likelihood estimators (MLE’s) of the Generalized Half Cauchy model and 
their asymptotic properties to obtain approximate confidence intervals based on MLE’s[18]. 

Let 1( , , )nx x x  be a random sample of size nfrom ( , , )GHC    ,then the log-likelihood function 

( , , | )x    can be written as;   
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Differentiating with respect to  ,   and  , we have 
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 Therefore, to obtain the MLE’s of  ,   and  , we can maximize above equation directly with respect to 

 ,   and   or setting these equations to zero and solving them simultaneously yield the maximum likelihood 

estimates (MLEs) of the model parameters. Numerical methods can be used to obtain the ML estimates of the 
parameters. Here, the Newton-Raphson iterative technique could be applied to solve the likelihood equations 
numerically[19]. 
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Let us denote the parameter vector by  , ,     and the corresponding MLE of   as  ˆ ˆ ˆˆ , ,   

, then the asymptotic normality results in 

    1
3

ˆ 0, ( )N I       

where I(δ) is the Fisher’s information matrix given by 
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 In practice, it is useless that the MLE has asymptotic variance   1
( )I  

because we do not know  .  

Hence, we approximate the asymptotic variance by “plugging in” the estimated value of the parameters.  The common 

procedure is to use observed Fisher information matrix ˆ( )O   (as an estimate of the information matrix ( )I  ) given 

by 
2 2 2

2

2 2 2

ˆ2
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where H is the Hessian matrix,   , ,     and  ˆ ˆ ˆˆ , ,    . The Newton-Raphson algorithm to maximize 

the likelihood produces the observed information matrix. Therefore, the variance-covariance matrix is given by 
 

  1

ˆ

ˆ ˆˆ ˆ ˆ( ) cov( , ) cov( , )
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Hence, from the asymptotic normality of MLEs, approximate 100(1 )%  confidence intervals for  ,   and 
can be constructed as 

 /2ˆ ˆ( )z var  /2
ˆ ˆ( )z var  and /2

ˆ ˆ( )z var    

where /2z  is the upper percentile of standard normal variate. 

IV.    BAYESIAN MODEL FORMULATION 

The Bayesian perspective is introduced, specifying prior distributions for the GHC model parameters. The Gibbs 
sampling technique is applied to obtain Bayesian estimators of parameters, posterior variances, and credible intervals. 
We discuss the incorporation of the GHC model into the OpenBUGS software for Bayesian analysis [20]. 
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The Bayesian model is constructed by specifying the prior distributions for the model parameters  ,   and  , and 

then multiplying with the likelihood function to obtain the posterior distribution function. 

 Probability Model :  ( | , , )f x     

 Prior distribution : ( , , )p     

 Data : 1( , , )nx x x  

Given a set of data 1( , , )nx x x , the likelihood function is 

12
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11
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Denote the prior distribution of  ,   and  as ( , , )p    . The joint posterior is 

( , , | ) ( , , | ) ( ) ( ) ( )p x L x p p p          

Prior distributions: 

We assume the independent gamma priors for 1 1~ ( , )G a b and  2 2~ ,  G a b , and uniform prior for

 3 3~ ,  U a b  as 

1
11 1 1

1 1
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( ) e ; 0, ( , ) 0
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2
12 2 2
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3 3
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1
( ) ;p a b
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Posterior distribution: 

Combining the likelihood function with the prior via Bayes' theorem yields the posterior up to proportionality as 

 1 11 2
1 2 1 2 3( , , | ) expa n a n n
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. 

The posterior is obviously complicated and no close form inferences appear possible. We, therefore, propose 
to consider MCMC methods to simulate samples from the posterior so that sample-based inferences can be easily 
drawn.  

Markov chain Monte Carlo draws samples by running a cleverly constructed Markov chain that eventually 
converges to the target distribution (called stationary or equilibrium) which, in our case, is the posterior distribution 

( , , | )p x   . 

 
Gibbs Sampler : Algorithm 

For Gibbs sampler implementation [21, 22], the full conditionals for  ,  and  upto proportionality can be specified 

as 

(i) Full conditional distribution of the parameter    for given  ,   and x  

   11
1 3( | , , ) expa n

p x b T        
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(ii) Full conditional distribution of the parameter   for given ,   and x  

  12
2 2 3( | , , ) expa n

p x b T T        

(iii) Full conditional distribution of the parameter   for given ,    and x  

  1 2 3( | , , ) n
p x T T T      

We shall use OpenBUGS software to obtain posterior samples. A module aks.dhc(alpha, beta, theta) is written in 
Component Pascal for Generalized Half Cauchy to perform full Bayesian analysis in OpenBUGS using the method 
described in [23, 24] . It is important to note that this module can be used for any set of suitable priors of the model 
parameters. Almost all aspects of the model in Bayesian framework can be studied using the developed module 
aks.dhc(alpha, beta, theta) 
 
Gibbs Sampler : Implementation 
1. Select an initial value  (0) (0) (0) (0) , ,     to start the chain. 

2. Suppose at the ith-step,   , ,    takes the value  ( ) ( ) ( ) ( ) , ,i i i i     then from full 

conditionals, we generate 
( 1)i  from  ( ) ( )| , ,i i

p x  
,

( 1)i  from  ( 1) ( )| , ,i i
p x   and ( 1)i  from  ( 1) ( 1)| , ,i i

p x     

3. This completes a transition from ( )i to ( 1)i   

4. Repeat Step 2, N  times. 

MCMC OUTPUT : POSTERIOR SAMPLE 

It is well known that rapid convergence is facilitated by choosing appropriate starting values. In order to 
guarantee the convergence and to remove the effect of the selection of initial value, the first ‘B’ simulate dvariates are 
discarded.  Also to reduce the effect of autocorrelation, select a sampling lag L > 1 after which the corresponding 
autocorrelation are low.  Consider  (1) ( ) ( ), , , ,j M    as the MCMC output (posterior sample) for the 

posterior analysis 

 ( ) ( ) ( ) ( ) , , ; 1,2, ,j j j j
j M     . 

Thus, MCMC output is referred as the sample after removing the initial iterations (produced during the burn-in period) 
and considering the appropriate lag, which can be used to develop the Bayesian inference. 
The Bayes estimates of    , ,    , under the square error loss (SEL) function, are given by 

( ) ( ) ( )

1 1 1

1 1 1ˆ ˆˆ ; ;
M M M

j j j

j j jM M M
     

  
    

 

The Bayes estimates under absolute and zero-one loss functions are posterior median and mode, respectively. 

POSTERIOR ANALYSIS: 

The posterior analysis section presents numerical and visual summaries of the Bayesian estimates, including posterior 
means, modes, standard deviations, quantiles, and credible intervals for model parameters. Convergence diagnostics, 
such as trace plots and the Brooks-Gelman-Rubin diagnostic, ensure the validity of the Bayesian analysis. 

A.  Classical Analysis 
The estimation of the parameter of proposed model is obtained by the method of maximum likelihood(ML) 

estimation. To check the validity of the model, we compute the Kolmogorov-Smirnov (KS) distance between the 
empirical distribution function and the fitted distribution function when the parameters are obtained by method of 
maximum likelihood. The well known graphical method Probability–Probability (PP) plot is also used for investigating 
the suitability of the model. 

Computation of MLE  

The maximum likelihood estimates (MLEs) are obtained by direct maximization of the log-likelihood function

( , , )   discussed earlier. The advantage of this procedure is that it runs immediately using existing statistical 

packages such as R [25]. We consider the software R through the Quasi-Newton algorithm [26] to compute the MLEs. 
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Fig 3     The profile negative log-likelihood plots of , and  

 
From Fig 3, we show that the likelihood equations have a unique solution. The Table 1 shows the ML 

estimates, standard error (SE) and 95% Confidence Intervals for parameters , and   . The maximized value of 

loglikelihood is ˆ ˆˆ( , , ) 409.7898.        

Table 1   MLE, standard error and 95% confidence interval 

Parameter MLE Std. Error 95% CI 

alpha 1.6869 0.4847 (0.7369, 2.6369) 

beta 1.2553 0.1272 (1.0060, 1.5046) 

theta 9.7552 2.6928 (4.4773, 15.0331) 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) can be help us to determine which 
model is most appropriate for the given data. For the given set, we have AIC=825.5795 and BIC=834.1356. These 
computation have to made by developing a R function abic.aks.ghc( ).  

Model Validation 

 To check the validity of the model [27], we compute the Kolmogorov-Smirnov (KS) distance between the 
empirical distribution function and the fitted distribution function when the parameters are obtained by method of 
maximum likelihood is 0.0340 and the corresponding p-value is 0.9985.  We have developed the R function 
ks.aks.ghc()  for computation.   

 

Fig 4    The graph of empirical and fitted distribution function. 

 

Fig 5    P-P plot using MLEs as estimate. 
 
We have plotted the empirical distribution function and the fitted distribution function in Fig 4 which clearly 

shows that the fitted Generalized Half Cauchy model provides nice to the given data. 
 A further validation of this model finding can be obtained by inspecting the probability-probability (P–P) plots 
(Srivastava and Kumar, 2015) 

A  P–P plot depicts the points   ( ) ( )
ˆ( ), ; ; 1,2, ,i iF x F x i n 

 
where ˆ ˆ ˆˆ( , , )     and 

http://www.ijircce.com/


International Journal of Innovative Research in Computer and Communication Engineering 

                                              | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | Monthly Peer Reviewed & Referred Journal | 

|| Volume 11, Issue 12, December 2023 || 

| DOI: 10.15680/IJIRCCE.2023.1112034 | 

IJIRCCE©2023                                                      |     An ISO 9001:2008 Certified Journal   |                                                  12166 

 

 

( )ix are the order statistics,  
1

( ) 1 ( )
n

n
i

F x n I X x


   is the empirical distribution function and ( )I   is the 

indicator function.  The corresponding developed R function pp.aks.ghc() for using computation. 
The P–P plot for the fitted model are shown in Fig 5. It is evident that the fit of the Generalized Half Cauchy model is 
good. 
 
B. Bayesian Analysis  
Using module aks.dhc(alpha, beta, theta) for this analysis, we assume the independent uniform prior for 

 3 3~ ,  U a b  and gamma priors for  1 1~ ,  G a b and  2 2 ~ G a , b with hyper parameter values 

1 1 2 2 3 3( 0.001, 0.001),( 0.001, 0.001)  and ( 0, 50.0). a b a b a b       
We run the model to generate two Markov Chains at the length of 30,000 with different starting points of the 

parameters. We have chosen initial values  1.0,  0.5, 5.0      for the first chain and 

 5.0,  3.0, 20.0      for the second chain. The convergence is monitored using trace and ergodic mean 

plots, we find that the Markov Chain converge together after approximately 2000 observations. Therefore, burn-in of 
5000 samples is more than enough to erase the effect of starting point(initial values). Finally, samples of size 5000 are 
formed from the posterior by picking up equally spaced every fifth outcome (to minimize the auto correlation among 
the generated deviates.), i.e. thin=5, starting from 5001.  
 Therefore, we have the posterior sample  ( ) ( ) ( )

1 1 1, , ; 1, ,5000j j j
j     from chain 1 and 

 ( ) ( ) ( )
2 2 2, , ; 1, ,5000j j j

j     from chain 2.  

 The chain 1 is considered for convergence diagnostics plots. The visual summary is based on posterior sample 
obtained from chain 1 whereas the numerical summary is presented for both the chains. 

Convergence diagnostics 

 Before examining the parameter estimates or performing other inference, it is a good idea to look at plots of 
the sequential(dependent) realizations of the parameter estimates and plots thereof. The sequential plot of parameters is 
the plot that most often exhibits difficulties in the Markov chain. Fig 6 shows the sequential realizations of the 
parameters of the model. 
 

 
Fig 6   Sequential realization of the parameters   ,  and . 

Visual summary 

The visual graphs include the boxplot, density strip plot, histogram, marginal posterior density estimate and 
rug plots for the parameters. We have also superimposed the 95% HPD intervals.  

These graphs provide almost complete picture of the posterior uncertainty about the parameters. We have used 
the posterior sample  ( ) ( ) ( )

1 1 1, , ; 1, ,5000j j j
j      to draw these graphs. 

 The density strip illustrates a univariate distribution as a shaded rectangular Histograms can provide insights 
on skewness, behavior in the tails, presence of multi-modal behavior, and data outliers; histograms can be compared to 
the fundamental shapes associated with standard analytic distributions. Fig 7 represents the histogram, marginal 
posterior density for   (left panel) and boxplot and density strip plot (right panel).  strip, whose darkness at a point is 
proportional to the probability density [28]. 
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Fig 7   Left panel  : Histogram and marginal  posterior density, Right panel : boxplot  density strip of and 95% HPD interval of   
 

 

Fig 8  Left panel  : Histogram and marginal  posterior 
density,   Right panel : boxplot  density strip of and 

95% HPD interval of   

 
Fig 9   Left panel  : Histogram and marginal  posterior density,  

Right panel : boxplot  density strip of and 95% HPD 

interval of   

The kernel density estimates have been drawn using R with the assumption of Gaussian kernel and properly chosen 

values of the bandwidths. It can be seen that   is symmetric whereas   
and   show positive skewness.  We have 

plotted the similar graphs for   and   displayed in Fig  8 and 9. 

Numerical Summary  

The numerical summary is presented for 
( ) ( ) ( )

, , ; 1, ,50001 1 1
j j j

j     
 

 

from chain 1 and 

 ( ) ( ) ( )
2 2 2, , ; 1, ,5000j j j

j   

from chain 2.  
We have considered various quantities of 
interest and their numerical values based on 
MCMC sample of posterior characteristics 
for Generalized Half-Cauchy model.  The 
MCMC results of the posterior mean, mode, 
standard deviation(SD), first quartile, 
median, third quartile, 2.5th percentile,  
97.5th percentile, skewness of the 

parameters  , and   are displayed in 

Table 2.        
 
The advantage of using the MCMC method over the MLE method is that we can always obtain a reasonable interval 
estimate of the parameters by constructing the probability intervals based on the empirical posterior distribution. This is 
often unavailable in maximum likelihood estimation.    
The algorithm described by Chen and Shao [29] is used to compute the HPD intervals under the assumption of 
unimodal marginal posterior distribution. The width of the HPD is another way of measuring uncertainty of beliefs. If 

Characteristics 
Chain 1 Chain 2 

alpha lambda theta alpha lambda theta 

Mean 2.445 1.204 14.422 2.539 1.194 14.988 

SD 1.316 0.135 7.906 1.340 0.135 8.063 

2.5th Percentile 1.034 0.971 6.287 1.076 0.963 6.363 

First Quartile (Q1) 1.582 1.107 9.277 1.650 1.099 9.619 

Median 2.043 1.192 11.930 2.144 1.181 12.500 

Third Quartile(Q3) 2.839 1.286 16.743 2.981 1.275 17.565 

97.5th Percentile 6.331 1.500 37.942 6.435 1.489 39.197 

Mode 1.678 1.174 9.803 1.714 1.161 9.880 

Skewness 1.915 0.478 1.893 1.870 0.551 1.784 

Kurtosis 4.260 0.319 3.858 4.261 0.417 3.436 
Table 2 : Numerical summaries based on MCMC sample of posterior  

characteristics. 
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the HPD is wide, then beliefs are uncertain. If the HPD is narrow, then beliefs are fairly certain. Table 3 shows the 

HPD and Credible intervals for  , and   parameters. 

Table 3     95%  symmetric and HPD credible intervals 

Parameter Symmetric Credible Interval HPD Credible Interval 

alpha (1.034, 6.331) (0.852, 5.344) 

lambda (0.971, 1.500) (0.951, 1.462) 

theta (6.287, 37.942) (5.089, 32.480) 

 

COMPARISON WITH MLE 

 We have used graphical method for the comparison of Bayes estimates with ML estimates. In Fig 10, the 

density functions ˆ ˆˆ( ; , , )f x     using MLEs and Bayesian estimates (the posterior means), computed via MCMC 

samples, are plotted.It is evident from the Fig 10 that the MLEs and the Bayes estimates are quite close and fit the data 
very well. 

A further support for this finding can be obtained by inspecting the Fig 11. In this figure, we have plotted 
th th th2.5 , 50 and 97.5 quantiles of the estimated density, it can be considered as evaluation of model fit, based on 

posterior sample,  

 ( ) ( ) ( )
1 1 1, , ; 1, ,5000j j j

j    .  

We have computed the density function at each observed data point for 5000 posterior samples, using logical 
function density( ) in OpenBUGS 

 ( ) ( ) ( )
1 1 1; , , ; 1, ,5000 ; 1, ,128j j j

if x j i      

  
Fig 10   The density functions using ML and Bayesian estimates 

 

Fig 11   Density estimates 

The density corresponding to MLE has been plotted using the “plug-in” estimates of the parameters. It shows 
that we have a fairly good model for the given data set.  

ESTIMATION OF HAZARD AND RELIABILITY FUNCTIONS 

In this section, our main aim is to demonstrate the effectiveness of proposed methodology. For this, we have estimated 
the reliability function using posterior samples. Since we have an effective MCMC technique, we can estimate any 
function of the parameters. We have used the Kaplan-Meier estimate of the reliability function to make the comparison 
more meaningful. The Fig 12 using Bayes estimate based on MCMC output and the empirical reliability function. This 
shows that reliability estimate based on MCMC is very close to the empirical reliability estimates.   

The estimated hazard function (dashed blue line & solid red line) using Bayes estimate based on MCMC output 
has been displayed in the Fig 12 (right panel). 
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Fig 12  Reliability function(left panel) and hazard function(right panel) estimate using MCMC 

  
ESTIMATION OF HAZARD AND RELIABILITY AT  20 :    2.26X t  

Indeed, the MCMC samples may be used to completely summarize the posterior uncertainty about the 

parameters  ,  and   through a kernel estimate of the posterior distribution. This is also true of any function of the 

parameters e.g. reliability and hazard functions. Suppose we wish to give point and interval estimates for reliability and 
hazard functions at the mission time t=2.26 ( at the 20th observed data point). 

We have computed the hazard and reliability functions at mission time t=2.26( at the 20th observed data point) 
for 5000 posterior samples, using logical function hrf( ) and reliability( ), (Kumar et al., 2010) in OpenBUGS. It can be 
computed directly using hazard and reliability functions respectively, which are already discussed in previous section. 

   
 ( ) ( ) ( )

1 1 12.26; , , ; 1, ,5000j j j
h x j   

    
and   ( ) ( ) ( )

1 1 12.26; , , ; 1, ,5000j j j
R x j     

Alternatively, we can develop R functions hgen.aks.ghc() and sgen.aks.ghc() respectively for computation. 
The marginal posterior density estimates of the reliability (left panel) and hazard functions(right panel) and their 

histograms based on samples of size 5000 are shown in Fig 13 using the Gaussian kernel.  The 95% HPD intervals are 
superimposed. 

 
Fig 13    Visual summary of reliability(left panel) and hazard(right panel) at t=2.26 

The MCMC results of the posterior mean, mode, 
standard deviation(SD), first quartile, median, third 
quartile, 2.5th percentile,  97.5th percentile, skewness, 
kurtosis, 95% symmetric and HPD credible intervals 
of reliability and hazard functions are displayed in 
Table 4.  The ML estimates of reliability and hazard 
function at t=2.26 are computed using invariance 
property of the MLE.  ML estimates

 ˆ 2.26 0.1032h t   and

 ˆ  = 2.26 0.8361R t  . 

Fig 14   Trace plot for Reliability and Hazard functions at t=2.26 
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A trace plot is a plot of the iteration number against the value of the draw of the parameter at each iteration. 
Fig 14 display 5000 chain values for the hazard h(t=2.26) and reliability R(t=2.26) functions, with their sample median 
and 95% credible intervals.  

Table 4  Posterior summary for Reliability and Hazard functions at t=2.26 

Characteristics Reliability Hazard 

Mean 0.8268 0.1026 

Standard  Deviation 0.0288 0.0125 

2.5th Percentile 0.7698 0.0796 

First Quartile (Q1) 0.8079 0.0943 

Median 0.8280 0.1020 

Third Quartile(Q3) 0.8475 0.1105 

97.5th Percentile 0.8790 0.1286 

Mode 0.8335 0.0997 

Skewness -0.2634 0.2893 

Kurtosis 0.0376 0.2183 

95% CI (0.7698, 0.8791) (0.0796, 0.1286) 

95% HPD CI (0.7686, 0.8771) (0.0807, 0.1292) 

MODEL COMPATIBILITY 
The paper evaluates the compatibility of the GHC model through posterior predictive checks. Graphical 
representations, including density estimates and quantile-quantile plots, compare observed data with simulated data 
from the fitted model. The study concludes with a discussion on the adequacy of the GHC model for the given data set. 

Posterior Predictive Checks 

A natural way to assess the fit of a Bayesian model is to look at how well the predictions from the model agree with the 
observed data. We do this by comparing the posterior predictive simulations with the data. There are several 
approaches available for the study of model compatibility in Bayesian framework. Predictive simulation is an easiest 
and flexible one. The basic idea of studying the model compatibility through predictive simulation is to compare the 
observed data or some function of it with the data that would have been anticipated from the assumed model called the 
predictive data. If the two data sets compare favourably, the assumed model can be considered to be an appropriate 
choice for the data in hand, [30]. Modern Bayesian computational tools however provide straight forward solutions as 
one can easily simulate predictive samples if MCMC outputs are available from the posterior corresponding to the 
assumed model. Most of the standard numerical and graphical methods based on predictive distribution can then be 
easily implemented to study the compatibility of the model. 
One of the best ways to assess model adequacy based on posterior predictive distributions is graphically. 

 

Fig 15   Posterior predictive distribution of (20)X  

 

Fig 16   Posterior predictive distribution of (1)X  
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To obtain further clarity on our conclusion for the study of model compatibility, we have considered plotting of density 

estimates of  (1) (2) (20) (127) (128), , , andX X X X X  replicated future observations from the model with 

superimposed corresponding observed data. For this purpose, 2000 samples have been drawn from the posterior using 
MCMC procedure and then obtained predictive samples from the model under consideration using each simulated 
posterior sample. The size of predictive samples is same as that of observed data.  
The posterior predictive distributions based on replicated future data sets are shown in Fig 15 to 19. Fig 16 to 19 
represents the estimates corresponding to smallest, second smallest, second largest and largest predictive observations, 
whereas the same for 20th smallest observations is shown in Fig 15. The corresponding observed values are also shown. 

 
Fig 17   Posterior predictive distribution 

of (2)X  

 
Fig 18   Posterior predictive distribution 

of (127)X  

 
Fig 19   Posterior predictive distribution 

of (128)X  

The MCMC results of the posterior mean, median, mode of smallest and largest  (1) (2) (127) (128)and, ,X X X X  

and (20)X are displayed in Table 5. 

Table 5:  Posterior characteristics 

 Observed Mode Mean Median 

X(1) 0.08 0.07 0.10 0.09 

X(2) 0.20 0.20 0.24 0.22 

X(20) 2.26 1.97 2.04 2.03 

X(127) 46.12 42.61 53.31 48.89 

X(128) 79.05 61.92 87.81 75.40 

As the Figures from 15 to 19 shows, the posterior predictive distributions are cantered over the observed 
values, which indicate good fit. In general, the distribution of replicated data appears to match that of the observed data 
fairly well. Overall, the results of the posterior predictive simulation indicate that model fits these data particularly 
well. 

 
Fig 20  Q-Q plot of predictive quantiles Vs empirical quantiles 

 
Fig 21   Graphical posterior predictive check of the model 

adequacy. 
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The basic idea of graphical model checking is to display the data alongside simulated data from the fitted model, and to 
look for systematic discrepancies between real and simulated data. In fact, we have predicated the entire data set.   Fig 
20 represents the Q-Q plot of predicted quantiles vs. observed quantiles. We, therefore, conclude that the generalized 
half-Cauchy is compatible with the given data set. Fig 21 exhibits graphical posterior predictive check of the model 
adequacy, solid line represents the posterior median and dashed lines(...) represent lower and upper bounds of 95% 
probability intervals, observed data is superimposed. The predictive data reflect the expected observations after 
replicating the experiment in future, having already observed x and assuming that the adopted model is true. Overall, 
the results of the posterior predictive simulation indicate that model fits these data particularly well.  

VI.    CONCLUSION 

The study introduced the Generalized Half Cauchy (GHC) model and conducted a thorough analysis using R. 
They obtained Maximum Likelihood Estimates (MLE) of parameters, calculated Bayesian estimates using MCMC, and 
derived probability intervals. The model's compatibility was assessed through a posterior predictive check. The 
techniques were applied to a real dataset, showcasing the GHC model's practicality. The study highlighted its potential 
use as an actuarial loss model, providing a valuable tool for Bayesian analysis in actuarial contexts. 
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