

e-ISSN: 2320-9801 | p-ISSN: 2320-9798

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 10, Issue 5, May 2022

INTERNATIONAL STANDARD SERIAL NUMBER INDIA

Impact Factor: 8.165

9940 572 462

🕥 6381 907 438

🛛 🖂 ijircce@gmail.com

m 🛛 🙋 www.ijircce.com

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

DOI: 10.15680/IJIRCCE.2022.1005015

Health Care Using Neural Network

Priyanka Nandanagi¹, Vidhi Jila¹, Ankita Gode¹, Amruta Sutar¹, Rahul Bhakta¹,

Mrs.Shilpa Kumbhar²

Final Year Diploma Students, Dept. of Computer Engineering, AG Patil Polytechnic Institute, Solapur,

Maharashtra, India¹

Lecturer, Dept. of Computer Engineering, A.G Patil Polytechnic Institute, Solapur, Maharashtra, India²

ABSTRACT: Disease Prediction system is based on predictive modeling predicts the disease of the user on the basis of the symptoms that user provides as an input to the system. The system analyzes the symptoms provided by the user as input and gives the probability of the disease as an output Disease Prediction is done by implementing the CNN Classifier. CNN Classifier calculates the probability of the disease suggests medicine. Suggesting diet and appropriate exercise is another merit of proposed system. Prediction of disease involves current as well as medical history of user.

KEYWORDS: CNN, disease prediction, data processing, machine learning

I. INTRODUCTION

As an important application of medical information, healthcare big data analysis has been extensively researched in the fields of intelligent consultation, disease diagnosis, intelligent question-answering doctors, and medical assistant decision support, and has made many achievements. In order to improve the comprehensiveness and pertinence of the medical examination, this paper intends to use healthcare big data analysis combined with deep learning technology to provide patients with potential diseases which is usually neglected for lacking of professional knowledge, so that patients can do targeted medical examinations to prevent health condition from getting worse. Inspired by the existing recommendation methods, this paper proposes a novel deep-learning-based hybrid recommendation algorithm, which is called medicalhistory-based potential disease prediction algorithm. The system analyzes the symptoms provided by the user as input and gives the probability of the disease as an output Disease Prediction is done by implementing the Decision tree Classifier. CNN Classifier calculates the probability of the disease. Along with disease prediction system also calculates severity of disease and as per severity of disease suggests medicine. Suggesting diet and appropriate exercise is another merit of proposed system. As an important application of medical information, healthcare big data analysis has been extensively researched in the fields of intelligent consultation, disease diagnosis, intelligent question-answering doctors, and medical assistant decision support, and has made many achievements. In order to improve the comprehensiveness and pertinence of the medical examination, this paper intends to use healthcare big data analysis combined with deep learning technology to provide patients with potential diseases which is usually neglected for lacking of professional knowledge, so that patients can do targeted medical examinations to prevent health condition from getting worse. Inspired by the existing recommendation methods, this paper proposes a novel deep-learning-based hybrid recommendation algorithm, which iscalled medical-history-based potential disease prediction algorithm. Now-a-days, people face various diseases due to the environmental condition and their living habits. So the prediction of disease at earlier stage becomes important task. But the accurate prediction on the basis of symptoms becomes too difficult for doctor. There is a need to study and make a system which will make it easy for end users to predict the chronic diseases without visiting physician or doctor for diagnosis. To detect the Various Diseases through the examining Symptoms of patient's using different techniques of Machine Learning Models.

II. LITERATURE SURVEY

The prediction of disease at earlier stage becomes important task. But the accurate prediction on the basis of symptoms becomes too difficult for doctor. There is a need to study and make a system which will make it easy for end users to predict the chronic diseases without visiting physician or doctor for diagnosis. Table 1 shows literature survey about disease prediction systems proposed in different literatures.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

Sr.	Paper Name,	Outline	Advantages
	Author and	Outime	Auvantages
	year		
	A Medical-	This paper	1) It considers both,
	History-Based	proposed	high-order relations as
	Potential	novel	well as low order
	Disease	deep-	combination of disease
	Prediction	learning-	among disease features,
	Algorithm,	based	2) Improved
	Wenxing et al,	hybrid	comprehensiveness
	Access/2019	recommen	compared to previous
		dation	system.
		algorithm,	
		which	
		predicts	
		the	
		patient's	
		possible disease	
		based on	
		the	
		patient's	
		medical	
		history and	
		provides a	
		reference	
		to patients	
		and	
	D · · ·	doctors	
	Designing Disease	Proposed	1) low time
	Prediction	general disease	consumption 2) minimal cost
	Model Using	prediction,	possible
	Machine	In which	3) The accuracy of
	Learning	the living	disease prediction is
	Learning Approach,	the living habits of	· ·
	Learning Approach, Dahiwade, D.,	habits of person and	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G.,	habits of person and checkup	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram,	habits of person and checkup informatio	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram,	habits of person and checkup informatio n consider for the	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the accurate	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the accurate prediction	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the accurate prediction It also	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E.,	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with general	disease prediction is
	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E., Xplore/2019	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with general disease	disease prediction is 84.5%
3	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E., Xplore/2019 Explainable	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with general disease Proposed a	disease prediction is 84.5%
3	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E., Xplore/2019 Explainable Learning for	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with general disease Proposed a comorbidit	disease prediction is 84.5% 1) Comfortably incorporates the
3	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E., Xplore/2019 Explainable Learning for Disease Risk	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with general disease Proposed a comorbidit y network	disease prediction is 84.5%
3	Learning Approach, Dahiwade, D., Patle, G., &Meshram, E., Xplore/2019 Explainable Learning for	habits of person and checkup informatio n consider for the accurate prediction It also computes the risk associated with general disease Proposed a comorbidit	disease prediction is 84.5% 1) Comfortably incorporates the

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

	AT . 1 AT		
	Networks, Xu,	disease risk	prediction performance
	Z., Zhang, J.,	prediction	
	Zhang, Q., & Yip, P. S. F.,	model.	
	/2019	The	
	72017	prediction	
		performan	
		ces are	
		demonstrat	
		ed by	
		using a	
		real case	
		study	
		based on	
		three years	
		of medical	
		histories	
		from the	
		Hong	
		Kong	
		Hospital	
		Authority.	
4	Design And	This paper	1) Accuracy is 89.77%
	Implementing	focused on	in spite of reducing the
	Heart Disease	heart	attributes.
	Prediction	disease	2) The performance of
	Using Naives	diagnosis	AES is highly secured
	Bayesian,	by	compared to previous
	Repaka, A. N.,	considerin	encrypting algorithm
	Ravikanti, S.	g previous data and	(PHEC).
	D., & Franklin, R.	informatio	
	G., /2019	n. To	
	0.,72017	achieve	
		this SHDP	
		(Smart	
		Heart	
		Disease	
		Prediction)	
		was built	
		via Navies	
		Bayesian	
		in order to	
		predict risk	
		factors	
		concerning	
		heart	
_	<u> </u>	disease.	
5	Similar	Proposed a	1) As the range of
	Disease	method to	predictions expands,
	Prediction	predict the	the proposed method is
	with	similarity	better than the disease
	Heterogeneous Disease	of diseases	prediction of only
	Information	by node	chemical-disease data
	Networks,	representat	source
	I INCLWOFKS.	ion	

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

	Gao, J., Tian,	learning.	
	L., Wang, J.,		
	Chen, Y.,		
	Song, B., &		
	Hu, X., 2020		
6	Chatbot for	This paper	1) This system help in
	Disease	explained a	reducing conduction of
	Prediction and	medical	daily check-ups
	Treatment	chatbot	2) It identifies the
		which can	· · · · · · · · · · · · · · · · · · ·
	Recommendat		symptoms and gives
	ion using	be used to	proper diagnosis.
	Machine	replace the	3) Chatbot doesn't
	Learning,	convention	require the help of
	Mathew, R.	al method	physician
	B., Varghese,	of disease	4) Cheaper
	S., Joy, S. E.,	diagnosis	5) The chat and users
	& Alex, S. S.,	and	relation is completely
	Ι	treatment	personal which helps
		recommen	users to be more open
		dation.	with their health
		Chatbot	matters
		can act as a	
		doctor.	
7	Chronic	The	1) Detects and suggest
'	Kidney	1110	diet which will be
	Disease	proposed	useful to the doctors as
	Prediction and	system use	
		machine	well as patients
	Recommendat	learning	
	ion of Suitable	algorithm	
	Diet Plan by	and	
	using Machine	suggest	
	Learning,	suitable	
	Maurya, A.,	diet plan	
	Wable, R.,	for CKD	
	Shinde, R.,	patient	
	John, S.,	using	
	Jadhav, R.,	classificati	
	&Dakshayani,	on	
	R., 2019	algorithm	
	, =017	on medical	
		test	
		records.	
		This	
		extracts the	
		features	
		which are	
		responsible	
		for CKD,	
		then	
		machine	
		learning	
		process	
		can	
		automate	
		the	
		classificati	
		Classificati	

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

		ſ	
		on of the	
		chronic	
		kidney	
		disease in	
		different	
		stages	
		according	
		to its	
		severity.	
8	Designing	This	1) The CNN takes less
	Disease	system	time than KNN for
	Prediction	compares	classifying large
	Model Using	CNN and	dataset.
	Machine	KNN for	2) CNN gives more
	Learning	disease	accurate disease
	Approach,	prediction	prediction than KNN.
	Dahiwade, D.,	Disease	=
	Patle, G.,	dataset	
	&Meshram,	from UCI	
	E.,	machine	
		learning	
		website is	
		extracted	
		in the form	
		of disease	
		list and its	
		symptoms.	
		Pre-	
		processing	
		is	
		performed	
		on that	
		dataset.	
		After that	
		feature	
		extracted	
		-	
		and selected.	
		Then	
		classificati	
		-	
		on and	
		prediction	
		using KNN	
		and CNN	
		is	
0	O	performed.	1) T he set 1
9	Smart Health	This paper	1) The proposed
	Monitoring	deal with	system helps patient to
	System using	IoT which	predict heart disease in
	IOT and	helps to	early stages.
	Machine	record the	2) It will be helpful for
	Learning	real time	mass screening system
	Techniques,	(patient)	in villages where
	Pandey, H., &	data using	hospital facilities are
	Prabha,	pulse rate	not available.
	S.,2020	r	not uvunuoie.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

		arduino	
		and is	
		recorded	
		using thing	
		speak.	
		Machine	
		learning	
		algorithms	
		were used	
		to make	
		prediction	
		of heart	
		disease.	
10	Random	This paper	1) The accuracy level is
	Forest	proposed a	greater when compared
	Algorithm for	system	to other algorithms.
	the Prediction	which	2) The system is
	of Diabetes,	performs	capable of predicting
	VijiyaKumar,	early	the diabetes disease
	K., Lavanya,	prediction	effectively, efficiently
	B., Nirmala,	of diabetes	and instantly.
	I., & Caroline,	for a	
	S. S, 2019	patient,	
		with higher	
		accuracy	
		by using	
		Random	
		Forest	
		algorithm.	

DOI: 10.15680/IJIRCCE.2022.1005015

CNN Algorithm

Over the last decade, tremendous progress has been made in the field of artificial neural networks. Deep-layered convolutional neural networks (CNN) have demonstrated state-of-the-art results on many machine learning problems, especially image recognition tasks.CNN is one of artificial neural networks which have distinctive architectures as shown in Fig. 1; Input data of CNN are usually RGB images (3 channels) or gray-scale images (1 channel). Several convolutional or pooling layers (with or without activation functions) follows the input layer. For classification problems, one or more full connection (FC) layers are often employed. The final layer outputs prediction values (such as posterior probability or likelihood) for K kinds of objects where the input image should be classified in.

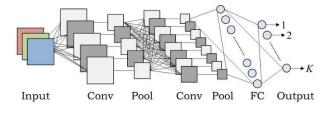


Fig 1 CNN architecture

Each layer of CNN can have a certain activation function which controls amount of output value to propagate its next layer. For intermediate layers, the rectified linear unit (ReLU)

$$f(a_i^l) = \max(0, a_i^l),$$

Note that all $i \in R$ is a sum of signals received by the i-th unit in the l-th intermediate layer. Meanwhile, for the last layer, the soft-max function is often used to obtain probabilistic outputs.

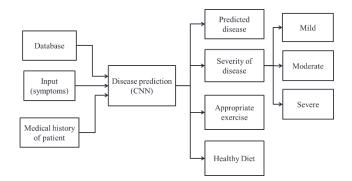
| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 5, May 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1005015|

 $f_k(\mathbf{z}) = rac{\exp(z_k)}{\sum_{\kappa=1}^K \exp(z_\kappa)},$

Note that z is a K dimensional vector where zkis a sum of signals received by the k-th unit in the last layer. Since the function is non-negative and has the unit sum property ($\lfloor kfk(z) = 1$), the value of fkimplies a class posterior probability that an input data belongs to the k-th class. Therefore, by using the soft-max function in the output layer, CNN can act a role of probability estimators for the object classification problems. As one of the distinctive properties of CNN, they have consecutive multiple feature representations which are automatically organized in their each convolutional layer through the training using given labeled instances. In spite of this interesting situation, typical dimensionality reduction methods (such as PCA) will visualize each feature representation individually, without regarding the relationships between those consecutive.


III. PROPOSED SYSTEM

The system analyzes the symptoms provided by the user as input and gives the probability of the disease as an output Disease Prediction is done by implementing the Decision tree Classifier. CNN Classifier calculates the probability of the disease. Along with disease prediction system also calculates severity of disease and as per severity of disease suggests medicine. Suggesting diet and appropriate exercise is another merit of proposed system

IV. EXISTING SYSTEM

Architecture

The correct prediction of disease is the most challenging task. To overcome this problem data mining plays an important role to predict the disease. Medical science has large amount of data growth per year. Due to increase amount of data growth in medical and healthcare field the accurate analysis on medical data which has been benefits from early patient care. This system is used to predict disease according to symptoms. As shown in figure below, database containing symptoms of different diseases is fed as input to system along with current symptoms of user and medical history of patient (when patient observed same type of symptoms before). Python based system used CNN algorithm to predict disease patient is suffering from. After predicting disease system classified disease into mild, moderate and severe conditions

V. CONCULSION

We proposed general disease prediction system based on machine learning algorithm. We utilized KNN and CNN algorithms to classify patient data because today medical data growing very vastly and that needs to process existed data for predicting exact disease based on symptoms. We got accurate general disease risk prediction as output, by giving the input as patients record which help us to understand the level of disease risk prediction. Because of this system may leads in low time consumption and minimal cost possible for disease prediction and risk prediction. We can say CNN is better than KNN in terms of accuracy and time. Accuracy of general disease risk prediction of CNN is higher as compared to other algorithms like KNN [1], Naïve Bayes, SMO, Multi-layer perceptron [4] etc. We got accurate general disease risk prediction as output, by giving the input as patients record which help us to understand the level of disease risk prediction as output, by giving the input as patients record which help us to understand the level of disease risk prediction of CNN is higher as compared to other algorithms like KNN [1], Naïve Bayes, SMO, Multi-layer perceptron [4] etc. We got accurate general disease risk prediction as output, by giving the input as patients record which help us to understand the level of disease

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

Volume 10, Issue 5, May 2022

DOI: 10.15680/IJIRCCE.2022.1005015

risk prediction. When compared with above mention algorithms, CNN leads in low time consumption and minimal cost possible for disease prediction and risk prediction. If the system takes an image along with some noise it recognizes the image as a completely different image whereas the human visual system will identify it as the same image with the noise. User/patient has to separately book appointment with doctor if symptoms are beyond the scopeThe role played by system can sometimes be beyond the scope and user may require consulting a doctor for taking health related tests. In such situations, system can be helpful if it can be made to set up an appointment with an efficient doctor based on their schedule. Also it will be beneficial if the symptoms and disease identified by the system can be made into a report and automatically forwarded to an available doctor where he can further assist the user withmore advices and future measures to maintain their health. A video call with a specialized doctor can also be made depending on the availability of the user rather than based on the availability of doctors.

REFERENCES

- [1] Wenxing Hong, Ziang Xiong, Nannan Zheng, Yang Weng, "A Medical-History-Based Potential Disease Prediction Algorithm", A Medical-History-Based Potential Disease Prediction Algorithm IEEE Access VOLUME 7, 2019, doi 10.1109/ACCESS.2019.2940644
- [2] Dahiwade, D., Patle, G., & Meshram, E. (2019). Designing Disease Prediction Model Using Machine Learning Approach. 2019 Proceedings of the Third International Conference on Computing Methodologies and Communication (ICCMC 2019) IEEE Xplore doi:10.1109/iccmc.2019.8819782
- [3] Xu, Z., Zhang, J., Zhang, Q., & Yip, P. S. F. (2019). Explainable Learning for Disease Risk Prediction Based on Comorbidity Networks. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). doi:10.1109/smc.2019.8914644
- [4] Repaka, A. N., Ravikanti, S. D., & Franklin, R. G. (2019). Design And Implementing Heart Disease Prediction Using Naives Bayesian. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). doi:10.1109/icoei.2019.8862604
- [5] Gao, J., Tian, L., Wang, J., Chen, Y., Song, B., & Hu, X. (2020). Similar Disease Prediction with Heterogeneous Disease Information Networks. IEEE Transactions on NanoBioscience, 1–1. doi:10.1109/tnb.2020.2994983
- [6] Mathew, R. B., Varghese, S., Joy, S. E., & Alex, S. S. (2019). Chatbot for Disease Prediction and Treatment Recommendation using Machine Learning. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). doi:10.1109/icoei.2019.8862707
- [7] Maurya, A., Wable, R., Shinde, R., John, S., Jadhav, R., & Dakshayani, R. (2019). Chronic Kidney Disease Prediction and Recommendation of Suitable Diet Plan by using Machine Learning. 2019 International Conference on Nascent Technologies in Engineering (ICNTE). doi:10.1109/icnte44896.2019.8946029
- [8] Dahiwade, D., Patle, G., & Meshram, E. (2019). Designing Disease Prediction Model Using Machine Learning Approach. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). doi:10.1109/iccmc.2019.8819782
- [9] Pandey, H., & Prabha, S. (2020). Smart Health Monitoring System using IOT and Machine Learning Techniques. 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII). doi:10.1109/icbsii49132.2020.9167660
- [10] VijiyaKumar, K., Lavanya, B., Nirmala, I., & Caroline, S. S. (2019). Random Forest Algorithm for the Prediction of Diabetes. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). doi:10.1109/icscan.2019.8878802.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

🚺 9940 572 462 应 6381 907 438 🖂 ijircce@gmail.com

www.ijircce.com