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ABSTRACT: Let  𝐺be a graph with diameter 𝑑. A radio labelling of  𝐺 is a function  𝑓 that assigns to each vertex with 

a non-negative integer such that the following holds for all vertices 𝑢, 𝑣: |𝑓(𝑢) − 𝑓(𝑣)| ≥ 𝑑 + 1 − 𝑑(𝑢, 𝑣), where  𝑑(𝑢, 𝑣) is the distance between 𝑢 and 𝑣. The span of  𝑓 is the absolute difference of the largest and smallest values in  𝑓(𝑉). The radio number of  𝐺 is the minimum span of a radio labelling admitted by 𝐺. In this article we determine the 

radio number of square of an odd dimensional hypercube. 
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I. INTRODUCTION 

The Frequency Assignment Problem (FAP) is to assign frequencies to the transmitters in a network in a way which 

avoids interference and uses the spectrum as efficiently as possible. Sometimes these assigning frequencies are called 

channels. Thus the problem is also known as the channel assignment problem. Hale [5] formalized the frequency 

assignment problem as a generalized graph coloring problem. This coloring have several variations depending upon the 

type of assignment of frequencies to stations. If the channels assigned to the stations 𝑢 and 𝑣 are 𝑓(𝑢) and 𝑓(𝑣), 

respectively, then |𝑓(𝑢) − 𝑓(𝑣)| ≥ ℓ𝑢𝑣 , where  ℓ𝑢𝑣  is inversely proportional to the distance  𝑑(𝑢, 𝑣) between the 

stations 𝑢 and 𝑣. Chartrand et al.[2] have introduced the radio  𝑘-coloring of simple connected graphs by taking ℓ𝑢𝑣 = 𝑑𝑖𝑎𝑚(𝐺) + 1 − 𝑑(𝑢, 𝑣). The span of a radio labelling 𝑓, denoted by 𝑠𝑝𝑎𝑛𝑓  (𝐺), is the largest integer assigned 

to a vertex of  𝐺. The radio number of  𝐺,   denoted by 𝑟𝑛(𝐺), is the minimum of spans of all possible radio labelings of 𝐺. A radio labeling 𝐺of 𝐺is called optimal if 𝑠𝑝𝑎𝑛𝑓(𝐺) = 𝑟𝑛(𝐺). 

Determining the radio chromatic number of a graph is an interesting yet difficult combinatorial problem with 

potential applications to CAP. The radio number of any hypercube was determined in [7] by using generalized binary 

Gray codes. Ortiz et al. [20] have studied the radio number of generalized prism graphs and have computed the exact 

value of radio number for some specific types of generalized prism graphs. For two positive integers  𝑚 ≥ 3 and  𝑛 ≥3, the Toroidal grids 𝑇𝑚,𝑛  are the cartesian product of cycle  𝐶𝑚 with cycle  𝐶𝑛. Morris et al. [19] have determined the 

radio number of  𝑇𝑛.𝑛 and Saha et al. [21] have given exact value for radio number of 𝑇𝑚,𝑛 when 𝑚𝑛 ≡  0 (𝑚𝑜𝑑 2). 

The radio numbers of the square of paths and cycles were studied in [14, 15]. For a cycle 𝐶𝑛, the radio number was 

determined by Liu and Zhu [16], and the antipodal number is known only for  𝑛 =  1, 2, 3  (𝑚𝑜𝑑 4) (see [1, 6]). 

The square of a graph 𝐺 is the graph 𝐺2 having the vertex set same as that of  𝐺 and edges between pair of vertices at 

distance one or two in  𝐺.   In this article, we determine the radio number of square of an odd dimensional hypercube. 

II. PRELIMINARIES 

For a hypercube 𝑄𝑛 of dimension 𝑛, the vertex set can be taken as binary 𝑛-bit strings and two vertices being 

adjacent if the corresponding strings differ at exactly one bit. For any two 𝑛-bit binary strings 𝑎 = 𝑎0𝑎1 … 𝑎𝑛−1  
and  𝑏 = 𝑏0𝑏1 … 𝑏𝑛−1 the Hamming distance  𝑑𝐻(𝑎, 𝑏) between 𝑎 and 𝑏 is the number of bits in which they differ. In 

particular, if  𝑥, 𝑦 ∈  {0, 1}, then 𝑑𝐻(𝑥, 𝑦)  =  0 or 1 according as 𝑥 =  𝑦 or 𝑥 ≠  𝑦 . If  𝑢 and 𝑣 are two vertices 

of 𝑄𝑛 with 𝑎 and  𝑏 as the corresponding strings, then 𝑑𝑄𝑛(𝑢, 𝑣) = 𝑑𝐻(𝑎, 𝑏). Two 𝑛-bit binary strings may differ in at 

most 𝑛 positions, so diameter of 𝑄𝑛 is 𝑛.   The results in the following lemma may be found in [17]. 

 

Lemma 2.1 For any three vertices 𝑢, 𝑣 and 𝑤  in 𝑄𝑛, the following are hold 

(a)  𝑑𝑄𝑛(𝑢, 𝑣) +  𝑑𝑄𝑛(𝑣, 𝑤) +  𝑑𝑄𝑛(𝑤, 𝑢) ≤ 2𝑛 

(b)  𝑑𝑄𝑛(𝑢, 𝑣) +  𝑑𝑄𝑛(𝑣, 𝑤) +  𝑑𝑄𝑛(𝑤, 𝑢) = 2𝑛  if and only if one of  𝑑𝑄𝑛(𝑢, 𝑣),  𝑑𝑄𝑛(𝑣, 𝑤),  𝑑𝑄𝑛(𝑤, 𝑢) is 𝑛. 

 



          
                        

                        ISSN(Online): 2320-9801 

              ISSN (Print):  2320-9798                            

International Journal of Innovative Research in Computer 

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 
 

Vol. 3, Issue 5, May 2015 

 

Copyright to IJIRCCE                                                             10.15680/ijircce.2015.0305182                                                          4932 

 

III. LOWER BOUND FOR RADIO NUMBER OF 𝑸𝒏𝟐  

 

In this section we give a lower bound for radio number of 𝑄𝑛2.   In next section we shall show that this bound is sharp 

when  𝑛 ≡  1, 3 (𝑚𝑜𝑑 4). For lower bound we need the following lemma. 

Lemma 3.1 For every three vertices  𝑢, 𝑣 and  𝑤 of  𝑄2,  𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) + 𝑑(𝑤, 𝑢) ≤  𝑛 + 1. 
 

Proof :  It is easy to see that  𝑑(𝑢, 𝑣) = ⌈ 𝑑𝑄𝑛(𝑢,𝑣)2 ⌉for any two vertices  𝑢 and  𝑢 of  𝑄𝑛2, where  𝑑𝑄𝑛(𝑢, 𝑣) denotes the 

distance of 𝑢 and  𝑣 in  𝑄𝑛. Therefore,  𝑑𝑄𝑛(𝑢, 𝑣) = 2𝑑(𝑢, 𝑣) − 𝑟1 where  𝑟1 ∈  {0, 1}. Similarly,  𝑑𝑄𝑛(𝑣, 𝑤) =2𝑑(𝑣, 𝑤) − 𝑟2 and  𝑑𝑄𝑛(𝑤, 𝑢) = 2𝑑(𝑤, 𝑢) − 𝑟3 , where  𝑟2, 𝑟3 ∈  {0, 1}. Again applying Lemma 2.1, we have  𝑑𝑄𝑛(𝑢, 𝑣) +  𝑑𝑄𝑛(𝑣, 𝑤) +  𝑑𝑄𝑛(𝑤, 𝑢) ≤ 2𝑛  and so 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) + 𝑑(𝑤, 𝑢) = 12 { 𝑑𝑄𝑛(𝑢, 𝑣) +  𝑑𝑄𝑛(𝑣, 𝑤) + 𝑑𝑄𝑛(𝑤, 𝑢) + 𝑟1 + 𝑟2 + 𝑟3} ≤ 2𝑛+𝑟1+𝑟2+𝑟32 .  Since  𝑑(𝑢, 𝑣)  +  𝑑(𝑣, 𝑤) +  𝑑(𝑤, 𝑢) is an integer, we get 

 𝑑(𝑢, 𝑣) +  𝑑(𝑣, 𝑤) +  𝑑(𝑤, 𝑢) ≤ ⌊𝑛 + 𝑟1 + 𝑟2 + 𝑟32 ⌋                                                                                              ≤ ⌊2𝑛 + 32 ⌋,         (𝑠𝑖𝑛𝑐𝑒 0 ≤ 𝑟1, 𝑟2, 𝑟3 ≤ 1).                                     = 𝑛 + 1. 

 

Hence the lemma is proved. 

 

Theorem 1 For an  n -dimensional hypercube 𝑄𝑛, 

𝑟𝑛(𝑄𝑛2) ≥ { ⌈𝑛 + 74 ⌉ ,                                𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑;⌈𝑛 + 44 ⌉ (2𝑛−1 − 1) + 1,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛. 
 

 

Proof : Let  𝑓  be an arbitrary radio labelling of  𝑄𝑛2  and 𝑥0, 𝑥1, … , 𝑥2𝑛−1 be an ordering of the vertices of  𝑄𝑛2  such that  0 = 𝑓(𝑥0) < 𝑓(𝑥1) < ⋯ < 𝑓(𝑥𝑛).  Let  𝐷 be the diameter of  𝑄𝑛2. Then 𝐷 = 𝑛2  or  
𝑛+12   according as  𝑛  is even or odd. 

Now from the radio conditions, we have 𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖) ≥ 𝐷 + 1 − 𝑑(𝑥𝑖 , 𝑥𝑖+1) 𝑓(𝑥𝑖+2) − 𝑓(𝑥𝑖+1) ≥ 𝐷 + 1 − 𝑑(𝑥𝑖+1, 𝑥𝑖+2) 𝑓(𝑥𝑖+2) − 𝑓(𝑥𝑖) ≥ 𝐷 + 1 − 𝑑(𝑥𝑖 , 𝑥𝑖+2). 
 

Now adding the above inequality and using Lemma 3.1, we get 

 

2(𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)) ≥ 3(𝐷 + 1) − (𝑛 + 1) 

 

and the above inequality holds for each  𝑖 ∈  {0, 1, … , 2𝑛 −  3}. Since  𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)  is an integer, the above 

inequality gives 𝑓(𝑥𝑖+2) − 𝑓(𝑥𝑖) ≥ ⌈3(𝐷 + 1) − (𝑛 + 1)2 ⌉ ,    0 ≤ 𝑖 ≤ 2𝑛 −  3. 
 

Adding the above inequality for even 𝑖and using  𝑓(𝑥2𝑛−1) − 𝑓(𝑥2𝑛−2) ≥ 1, we have 

 𝑓(𝑥2𝑛−1) ≥ ⌈3(𝐷 + 1) − (𝑛 + 1)2 ⌉ (2𝑛−1 − 1) + 1. 
 

Hence the result as  𝑓 was an arbitrary radio labelling of  𝑄𝑛2. 
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IV.  OPTIMAL RADIO LABELLING OF  𝑸𝒏𝟐  

 

In this section, we present an optimal radio labelling of  𝑄𝑛2  when  𝑛  is odd. 

 

Lemma 4.1 For any odd integer 𝑛 , there exists an ordering  𝑣0, 𝑣2, … , 𝑣2𝑛−1 of vertices of  𝑄𝑛 such that the sequence  𝑑(𝑣0, 𝑣1), 𝑑(𝑣1, 𝑣2), … , 𝑑(𝑣2𝑛−2, 𝑣2𝑛−1)  is an alternating sequence of 𝑛′s and  𝑛+12   (beginning with  𝑛 ). 
 

The lemmas given below produces an ordering of vertices  𝑄𝑛   2 that facilitate an optimal radio labelling. 

 

Lemma 4.2 For  𝑛 ≡  3 (𝑚𝑜𝑑 4), there exists an ordering 𝑣0, 𝑣2, … , 𝑣2𝑛−1 of vertices of 𝑄𝑛2  such that for all  𝑖  the 

following hold. 

(a)  𝑑(𝑣𝑖 , 𝑣𝑖+1) = {𝑛+1 2 ,     𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑛+14 ,     𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑.  

(b)  𝑑(𝑣𝑖 , 𝑣𝑖+1) = 𝑛+14 . 

(c)  𝑑(𝑣𝑖 , 𝑣𝑖+3) = 𝑛+14 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖. 
 

Proof : Since   𝑉(𝑄) = 𝑉( 𝑄𝑛2), we take the same ordering   𝑣0, 𝑣2, … , 𝑣2𝑛−1 as in Lemma4.1 for the vertices of 𝑄𝑛2.  

Since  𝑑(𝑣0, 𝑣1),  𝑑(𝑣1, 𝑣2), … ,  𝑑(𝑣2𝑛−2, 𝑣2𝑛−1) is an alternating sequence of  𝑛’s and  𝑛+1 2  (beginning with 𝑛 ), so the 

part (a) is complete due to the fact 𝑑(𝑢, 𝑣) = ⌈ 𝑑𝑄𝑛(𝑢,𝑣)2 ⌉ for any two vertices 𝑢, 𝑣 in  𝑄𝑛2. For part (b), first we assume  𝑖  
being an even integer. Then  𝑑𝑄𝑛(𝑣𝑖 , 𝑣𝑖+1) = 𝑛 

and 𝑑𝑄𝑛(𝑣𝑖+1, 𝑣𝑖+2) = 𝑛 + 1 2  

 

and hence from Lemma2.1 we have 𝑑𝑄𝑛(𝑣𝑖+2, 𝑣𝑖) = 𝑛 − 1 2 . 
Therefore,   𝑑(𝑣𝑖 , 𝑣𝑖+1) = 𝑛 + 12 ,  𝑑(𝑣𝑖+1, 𝑣𝑖+2) = 𝑛 + 14  

 

and   𝑑(𝑣𝑖 , 𝑣𝑖+2) = 𝑛 + 14 . 
 

By similar argument we can prove the result for odd integer  𝑖.   
 

Part (c) is similar to the part of (b). For part (c) we have to take three vertices 𝑣𝑖 , 𝑣𝑖+2, 𝑣𝑖+3 for even  𝑖. 
 

Using similar argument as used in Lemma 4.2 we can prove the following result. 

 

 

Lemma 4.3  For  𝑛 ≡  1 (𝑚𝑜𝑑 4), there exists an ordering  𝑣0, 𝑣2, … , 𝑣2𝑛−1  of  vertices of  𝑄𝑛2  such that for all  𝑄𝑛2  the 

following hold. 
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(a)  𝑑(𝑣𝑖 , 𝑣𝑖+1) = {𝑛+1 2 ,     𝑖𝑓  𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑛+34 ,     𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑.  

(b)  𝑑(𝑣𝑖 , 𝑣𝑖+1) = 𝑛−14 . 

(c)  𝑑(𝑣𝑖 , 𝑣𝑖+3) = 𝑛−14 ,          𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖. 
 

In the theorem below we determine an upper bound for radio number of  𝑄𝑛2  when 𝑛 is odd. 

 

 

Theorem 2 For any  𝑛-dimensional hypercube  𝑄𝑛with  n as odd 

𝑟𝑛(𝑄𝑛2) ≤ {(𝑛 + 74 ) (2𝑛−1 − 1) + 1,                     𝑖𝑓 𝑛 ≡  1 (𝑚𝑜𝑑 4);(𝑛 + 74 ) (2𝑛−1 − 1) + 1,                      𝑖𝑓 𝑛 ≡  1 (𝑚𝑜𝑑 4). 
 

 

Proof : Let  𝑣0, 𝑣2, … , 𝑣2𝑛−1 be the ordering of vertices of  𝑄𝑛  prescribed in Lemma 4.1. Then  𝑣0, 𝑣2, … , 𝑣2𝑛−1 is an 

arrangement of vertices in  𝑄𝑛 2 such that the sequence 𝑑(𝑣0, 𝑣1),  𝑑(𝑣1, 𝑣2), … ,  𝑑(𝑣2𝑛−2, 𝑣2𝑛−1) is an alternating 

sequence of   𝑛+12 ′s and  ⌈𝑛+12 ⌉ ′s (𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ  𝑛+12 ). We consider the following two cases according  𝑛 ≡ 3 (𝑚𝑜𝑑 4)  and 𝑛 ≡  1 (𝑚𝑜𝑑 4). In both the cases we take  𝑉(𝑄𝑛2) = { 𝑣0, 𝑣2, … , 𝑣2𝑛−1}. 

 

Case-1 :  𝑛 ≡  3 (𝑚𝑜𝑑 4).  Here define a mapping  𝑓: 𝑉(𝑄𝑛2) → {0,1,2, … . , }  by 

 

𝑓(𝑣𝑖+1) = { 𝑖2 (𝑛 + 1 4 + 2) ,                   𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑖 − 12 (𝑛 + 1 4 + 2) + 1,      𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑. 
 

We show that  𝑓 is a radio labelling of 𝑄𝑛2. Let 𝑣𝑖 and  𝑣𝑗  be arbitrary two vertices of 𝑄𝑛2. Without loss of generality we 

assume  𝑖 <  𝑗.  If 𝑗 =  𝑖 +  1,   then from the definition of  𝑓, 
 𝑓(𝑣𝑖+1) − 𝑓(𝑣𝑖) = {1,                                                                                     𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑖 + 12 (𝑛 + 1 4 + 2) − 𝑖 − 12 (𝑛 + 1 4 + 2) − 1,      𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑. 
   = {1,                      𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑛 + 14 + 1,      𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑.                                    

 

 

As  𝑑(𝑣𝑖 , 𝑣𝑖+1) = 𝑛+12   or  𝑑(𝑣𝑖 , 𝑣𝑖+1) = 𝑛+1 4   according as  𝑖  is even or odd, so from the above equality, we may write 𝑓(𝑣𝑖+1) − 𝑓(𝑣𝑖) = 𝑛+1 2 + 1 − 𝑑(𝑣𝑖+1, 𝑣𝑖) for all  𝑖. Therefore the radio condition is satisfied for  𝑗 = 𝑖 + 1.  Now we 

show that the same is true for  𝑗 ≥ 𝑖 + 4 . For this we calculate 𝑓(𝑣𝑖+4) − 𝑓(𝑣𝑖)  in the following. From the definition 

of  𝑓  we have 
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𝑓(𝑣𝑖+4) − 𝑓(𝑣𝑖) = {𝑖 + 42 (𝑛 + 1 4 + 2) − 𝑖2 (𝑛 + 1 4 + 2) ,                           𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑖 + 32 (𝑛 + 1 4 + 2) + 1 − 𝑖 − 12 (𝑛 + 1 4 + 2) − 1,    𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑  

                                                               = 𝑛+12 + 4. 

 

 

Therefore 𝑓(𝑣𝑖+1) − 𝑓(𝑣𝑖) > 𝑛+12   for  𝑗 ≥ 𝑖 + 4  as  𝑓 is an increasing function with   𝑗.  Since 

the diameter of  𝑄𝑛2  is  𝑛+12   the radio condition is satisfies for two vertices  𝑣𝑖   and  𝑣𝑗  when  𝑗 ≥ 𝑖 + 4.   Therefore, our 

remaining cases for showing radio condition are  𝑗 = 𝑖 + 2  and  𝑗 = 𝑖 + 3. First take  𝑗 = 𝑖 + 2.   From the definition of  𝑓  and using 𝑑(𝑣𝑖 , 𝑣𝑖+2) = 𝑛+14    from 

Lemma 2.1, we have  𝑓(𝑣𝑖+2) − 𝑓(𝑣𝑖) = 𝑛 + 1 4 + 2 > 𝑛 + 1 2 + 1 −  𝑑(𝑣𝑖 , 𝑣𝑖+2)             (1)  
 

Therefore radio conditions are also satisfies when 𝑗 = 𝑖 + 2. Now we take  𝑗 = 𝑖 + 3.  From definition of 𝑓 , we have  
𝑓(𝑣𝑖+3) − 𝑓(𝑣𝑖) = {𝑛 + 14 + 3,        𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛; 𝑛 + 12 + 3,      𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑.  

 

 

From above it is clear that the radio condition is automatically satisfies for odd  𝑖 as the difference  𝑓(𝑣𝑖+3) −𝑓(𝑣𝑖) exceeds the diameter of  𝑄𝑛2.   Again for even integer 𝑖 , 𝑑(𝑣𝑖 , 𝑣𝑖+3) = 𝑛+14   (from Lemma 2.1) and so in this case 

the radio conditions also hold. On account of all the above all possible cases, we can say that  𝑓  is an antipodal 

labelling of  𝑄𝑛2.   Clearly, the span of  𝑓 is  (𝑛+94 ) (2𝑛−1 − 1) + 1 and it attains at  𝑣2𝑛−1. Therefore, the theorem is 

proved when  𝑛 ≡ 3 (𝑚𝑜𝑑 4).  
 

Case-2 :  𝑛 ≡ 3 (𝑚𝑜𝑑 4).   In this case define a mapping  
 𝑔: 𝑉( 𝑄𝑛2) → {0,1, … , } by 

 

 

𝑔(𝑣𝑖+1) = {𝑖2 (𝑛 + 34 + 1) ,                     𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛𝑖 − 12 (𝑛 + 34 + 1) + 1,      𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑  

 

To show  𝑔  is a radio labelling of  𝑄𝑛2,  we need to show 𝑔(𝑣𝑗) − 𝑔(𝑣𝑖) ≥ 𝑛+1 2 + 1 −  𝑑(𝑣𝑖 , 𝑣𝑗) 

 

for all  𝑖  and   𝑗  with  𝑗 > 𝑖.   Observe that if  𝑔(𝑣𝑗) − 𝑔(𝑣𝑖) ≥ 𝑛+1  2     for some  𝑖  and  𝑗 , then 

radio condition automatically satisfies. By simple calculation as used in Case-1, we may show that  𝑔(𝑣𝑗) − 𝑔(𝑣𝑖) ≥𝑛+1 2    with  𝑗 − 𝑖 ≥ 4  . So we to prove the radio condition for  𝑗 ∈ {𝑖 + 1, 𝑖 + 2, 𝑖 + 3}.   By similar argument with the 

help of Lemma 4.3, we can show that the radio condition satisfies for these values  𝑗.  
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