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ABSTRACT: Map Reduce is programming model and it processes large scale data in distributed applications due to its 

efficiency, simplicity and ease of use. Hadoop is an open source implementation of the Map Reduce programming 

model for cloud computing. Thought Hadoop is giving best performance but still it tackle number of issues to gain that 

performance . The issues faces by Hadoop are (1) A serialization barrier that delays the reduce phase, repetitive merges, 

and disk accesses (2) The lack of portability to different interconnects. In this paper, propose a distributed 

implementation of Hierarchical Merge using RDT algorithm using Map Reduce computing model, and deploy it on a 

Hadoop cluster. It resolve memory scalability problem and increases performance of Map reduce. It also speed up the 

delivery of data from MapTasks to Reduce Tasks. While their work reduces job completion time and improves system 

utilization. 
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I. INTRODUCTION 

 

   Map-Reduce [1] has emerged as a popular and easy-to-use programming model for cloud computing . It has been 

used by numerous organizations to process explosive quantity of data, perform large number of computation, and fetch 

critical knowledge for business intelligence. Hadoop [2] is an open source implementation of MapReduce, currently 

maintained by the Apache Foundation, and supported by leading Information technology companies such as Facebook 

and Yahoo!.Hadoop is a implementation of MapReduce framework with two types of components: a Job Tracker and 

many Task-Trackers. The Job Tracker commands Task Trackers (a.k.a.slaves) to process data in parallel through two 

main functions: map and reduce. In this process, the JobTracker is in charge of scheduling map tasks (MapTasks) and 

reduce tasks (ReduceTasks) to Task Trackers. 

 

   It also monitors their growth, collects runtime execution result, and handles possible errors and faults through task 

reexecution. Between the two phases, the intermediate output from all finished MapTasks need to be fetch by reduce 

task. Globally, this leads to the shuffling of intermediate data (in segments) from all MapTasks to all ReduceTasks. For 

many data intensive MapReduce programs, data shuffling can cause to a significant number of operations on disk, 

contending for the limited I/O bandwidth. This severe problem of disk I/O contention in MapReduce programs, which 

entails further research on efficient data shuffling and merging algorithms.Fig. 1 shows overview of data processing in 

Hadoop. 

 
Fig.4. Data Processing In Hadoop MapReduce Framework 
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   Improving the performance of MapReduce recently.Originally, the Hadoop scheduler assumed that all nodes in a 

cluster were homogeneous and made progress with the same speed. Focuses on fast data output from MapTasks and 

changes Hadoop fault handling mechanism. The major issues faces by hadoop are Serialization barrier and continuous 

merging of data and disk access. 

 

A. Serialization barrier in Hadoop : 

   Hadoop is easy to use data processing framework.When large number of task is given for processing a pool of 

concurrent MapTasks starts the map function on the first set of data splits. When Map Output Files (MOFs) are 

generated from these splits, a pool of ReduceTasks starts to fetch partitions from these MOFs. At each ReduceTask, 

when the number of segments is larger than a threshold, or when their total data size is more than a memory threshold, 

the smallest segments are merged. For the correctness of the MapReduce programming model, it is necessary to ensure 

that the reduce phase does not start until the map phase is done for all data splits. However, the pipeline, as shown in 

Fig.2, contains an implicit serialization. At each ReduceTask, only until all its segments are available and merged, will 

the reduce phase start to process data segments via the reduce function. This essentially enforce a serialization between 

the shuffle/ merge phase and the reduce phase. When there are many segments to process (which is often the case), it 

takes a significant amount of time for a ReduceTask to shuffle and merge them. As a result, the reduce phase will be 

significantly delayed and this can increase the total execution time. 

 

B.  Continuous Merging and disk access: 

Hadoop ReduceTasks merge data segments when the number of segments or their total size goes over a threshold. 

A newly merged segment has to be spilled to local disks due to memory pressure. However, the current merge 

algorithm in Hadoop often leads to repetitive merges, thus extra disk accesses. Fig. 3 shows a common sequence of 

merge operations in Hadoop.When more segments arrive, the threshold is reached again. It is then necessary to merge 

another set of segments.This again causes additional disk access, let alone the need to read segments back if they have 

been stored on local disks. As even more segments arrive, a previously merged segment will be grouped into another 

set and merged again. Furthermore, any segment merged from a subset of segments eventually needs to be merged for 

final results. Altogether, this means repetitive merges and disk access, causing degraded performance for Hadoop. 

Therefore, an alternative merge algorithm is critical for Hadoop to mitigate the impact of repetitive merges and extra 

disk accesses. 

          
                    Fig.2. Serialization barrier in Hadoop                                                fig.3. Continuous Merging and disk access 

 

II. RELATED WORK 

 

   The MapReduce[1] is programming model has been successfully used. This model is very easily used by the 

programmers not having experience with parallelization and distributed systems, since it handles issues in distributed 

system such as parallelization, fault-tolerance, locality optimization, and load balancing. Hadoop Mapreduce[12] is the 

best tool available for processing data and its distributed, column-oriented database, HBase which uses HDFS for its 

underlying storage, and support provides more efficiency to the system.But still hadoop having some data shuffling 

problem and data shuffling can lead to a significant number of disk operations, contending for the limited I/O 

bandwidth. In network-levitated merging algorithm [3] the idea is to leave data on remote disks until it is time to merge 

the intended data records. In network levitated algorithm, number of remote segments S1, S2,..., Sn are to be fetched 

from local disks and then merged. the alternative way of accessing them to local disks,network levitated algorithm only 

fetches a small header from each segment. Each header is made up of partition length, offset, and the first pair of < key; 
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val >.These < key; val > pairs are enough to build a priority queue (PQ) to manage these segments. After the first < 

key; val >pair,many records can be fetched as according to the available memory. Because it access only a tiny amount 

of data per segment, this algorithm does not store or merge segments onto local disks. When the number of segments is 

over a threshold without merging them, we keep building up the Priority Queue until all headers arrive and are merge. 

When the building of PQ has been completed, the merge phase starts its execution. The leading < key; val > pair will be 

the beginning point of merge operations for individual segments, i.e., the merge point.The design and architecture of 

Hadoops MapReduce framework propose by author Mrigank mridual, Kumar N[4].In hadoop analysis is based on data 

processing. So bigdata is the new buzz word and Hadoop Mapreduce is the best tool available for processing data and 

its distributed, column-oriented database, HBase which uses HDFS for its underlying storage, and support provides 

more efficiency to the system.But still hadoop having some data shuffling problem and data shuffling can lead to a 

significant number of disk operations, contending for the limited I/O bandwidth. 

 

   MapReduce is a programming model for large-scale arbitrary data processing. To fully take advantage of the 

multicore and multiprocessor systems, Ranger et al. [4] designed Phoenix,a MapReduce implementation for shared-

memory systems. In Phoenix, users only need to write simple parallel code without considering the complexity of 

thread creation, dynamic task scheduling, data partitioning, and fault tolerance across processor nodes. Kaashoek et al. 

[5] then designed a new MapReduce library with a compromise data structure, which outperforms its simpler peers, 

including Phoenix. Tiled-MapReduce designed by Chen et al. [6] further improves the Phoenix by leveraging the tiling 

strategy that is commonly used in complier community. It divides a large MapReduce job into multiple discrete subjobs 

and extends the Reduce phase to process partial map output. By meticulously reusing memory and threads, Tiled-

MapReduce achieves considerable speedup over Phoenix. But our work is completely different from these works in 

three aspects.  

 

III. PROPOSED SYSTEM 

 

A. System Architecture of Hadoop: 

Figure 4. shows architecture of proposed system.The group of Task is given to the system,this group is splitting and 

given for the mapping.Map phase take the task and generate intermediate file this is based on RDT.The intermediate 

file get shuffle and merged and reducer reduces the result. All this phases generate tree so that performance of system 

get increases and because we create tree for each phase memory require is less. 

 

B.  Algorithm For Random decision tree: 

C4.5 is a standard algorithm for inducing classification rules in the form of decision tree. As an extension of ID3 , 

Fig.4. System Architecture of System the default criteria of choosing splitting attributes in C4.5 is information gain 

ratio. Instead of using information gain as that in ID3, information gain ratio avoids the bias of selecting attributes with 

many values. 
 
Input: Dataset T, Attribute S; 

Output: Decision Tree tree; 

    If  T is Null then 

         return Fail 

   end If  s=1 then 

          return Tree as a single Node 

   end If    

   set Tree=Empty 

  for a  subset S do 

         setInfo(a; T) = 0 and  SplitInfo(a; T) = 0 

        Compute Entropy(a); 

        for v  belongs values(a; T) do 

           Set Ta;v as a subset of T as attribute a=v 

           Info(a,T)+=Ta;v=TaEntropy(av) 

          splitInfo(a,T)=  -(Ta;v=Ta)Log(Ta;v=Ta) 

       end for 
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       Gain(a,T)=Entropy(a)-Info(a,T) 

       GainRatio(a,T)=Gain(a,T)/SplitInfo(a,T) 

 end for 

 set a_best = argmaxGainRatio(a; T) attach  a_best into Tree 

 for v  values(a_best,T) do 

      call again 

end For 

Return Tree 

 

IV. SIMULATION RESULTS 

 

   The system conduct our experiment on 1 master node and 1 slave node having 5 GB RAM. This node run ubantu 

operating system name centos cloudera having 1 processor and 1 TB hard disk.Weather forecasting dataset.we require 

hadoop framework and apache framework with eclipse. The forecasting dataset is given as a input to the system. The 

Figure 5. shows the final execution of system.fig 6. Shows memory require for the file system which include no. of 

bytes read ,written,operation on file system etc.fig 7 display final result in which number of map task ,reduce 

task,memory required ,number of nodes ,entropy is shown. 

 

   When total execution of system is completed the RDT is generated for final result based on dataset shown in fig.8.For 

intermediate files also RDT is generated shown in fig. 9.In this experiment 8 homogeneous clusters are generated from 

weather forecasting dataset.Number of Clusters are generated according to size of dataset at runtime.Fig. 10 shows the 

Fig. 7. Final Result cluster information ,intermediate file , Source file and output file. 

  

                    
  
                  Fig.5.System Execution                                                                                     Fig.6.Memory Required For System 

         

   
                    
                        Fig.7. Final Result                                                                                                 Fig.8.Final RDT ofSystem                                                                         
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                        Fig.9. Intermediate file RDT                                                                Fig.10. Clusters, Input, Intermediate, Output files 
 

V. CONCLUSION AND FUTURE WORK 

 

   In this paper,we are describing Hierarchical merge with RDT algorithm to resolve Hadoop issues. the propose 

hierarchical merge with RDT algorithm that merges data without touching disks and designing a full Queue of shuffle, 

merge, and reduce phases for Reduce Tasks.Direct network channels between MapTasks and Reduce Tasks and speed 

up the delivery of data from MapTasks to Reduce Tasks. While their work reduces job completion time and improves 

system utilization.The structure of a random tree is constructed completely independent of the training data. The 

training data is scanned exactly once to update the statistics in multiple random trees. The memory requirement is to 

store multiple random trees and one data item at any given time. With the necessary number of random trees to ensure 

optimality, the memory requirement of the random tree algorithm is significantly less even if the very large training 

data could have been held entirely in main memory to compute the single best tree. 
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