

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404335 7922

More Refactorings: Aspect Oriented
Programming with AspectJ

Geeta Bagade (Mete), Dr. Shashank Joshi

Ph.D. Scholar, YMC, Bharati Vidyapeeth, Pune, India

Professor/ Ph.D Guide, COE, Bharati Vidyapeeth, Pune, India

ABSTRACT: Even though Object Oriented Programming has been established firmly in the software industry, it has
some disadvantages like code scattering, code tangling etc. Due to such limitations changes to the software become
difficult. The size of the software goes on increasing whenever the code is changed. So it becomes weak and difficult
to change. These are some of the limitations that should be resolved. Aspect Oriented Programming Languages
provide us a way to solve these limitations. There are many AOP languages. One of them is AspectJ. The process of
changing software is called as refactoring. By using refactoring we can change the existing software without affecting
the behaviour of the software. In the previous paper, we had proposed a set of refactoring for Aspect Oriented
Programs. In this paper, we propose some more refactorings that can be used for Aspect Oriented Programming using
AspectJ

KEYWORDS: Systems, Aspect Oriented Programming, Pointcut, Joinpoint, Refactoring Advice Aspect Oriented
Programming, Aspect Oriented Concerns, AspectJ, Concerns, Aspect, Aspect Mining

I. INTRODUCTION

Aspect Oriented Programming is used to solve the question of cross cutting concerns. These concerns are present

everywhere in the software. Some of the examples of cross cutting concerns are exception handling, logging, security,
synchronization etc. We use the concept of classes in OOP to handle such concerns. But then the code becomes more
scattered and entangled. Even making a slight change to the software becomes difficult. To solve this problem of cross
cutting concerns, we have Aspect Oriented Programming. Aspect Oriented Programming uses the notion of aspect.

An aspect is nothing but a class. This class manages the cross cutting concern. Therefore the code becomes
more understandable, adaptable and good Here the main focus of the programmer are the cross cutting concerns. In the
20th century, the Xerox Palo Alto Research Centre (Xerox PARC) invented Aspect Oriented Programming Various
tools like AspectC, AspectC++, and AspectJ have this functionality. Aspect Oriented Programming solves the problem
of code tangling, code scattering etc. Aspect Oriented Programming helps us in reusing the code and making the
software more modular. It helps in reducing code scattering and code tangling. Since the arrival of Java and AspectJ,
Aspect Oriented Programming is on its way to be a great success in the field of computer science after OOP.

II. REFACTORINGS IDENTIFIED

In the 1990’s, refactoring surfaced. The main purpose of refactoring is to change the code in an organized way so

that the probability of introducing errors/bugs is reduced. Refactoring can help in reducing the cost involved during
development and maintenance. It will also help the systems to evolve. Refactoring helps us in changing the software in
a way that the existing functionality/behavior is retained. Refactoring can be done by using manual method or by using
a set of tools like Eclipse. A number of refactoring techniques like Assertions, Graph Transformations, Program
Slicing, Software Metrics, Formal Concept Analysis, and Program Refinement are used. Here we present a new set of
refactorings identified. that can be used with AspectJ.
A. Name of the refactoring: Introduce the get and set pointcut, introduce before and after advice
The Syntax for the get pointcut refactoring is
 pointcut pointcutName(): get(Datatype VariableName)

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404335 7923

The syntax for the set pointcut is
 pointcut pointcutName (Datatype VariableName) : set (Datatype VariableName) && args(VariableName)

This experiment also introduces before and after advice for the get and set pointcuts.
 Syntax for before and after advice for set pointcut is
 before/after (Datatype VariableName) : pointcutName (VariableName)

Syntax for before and after advice for get pointcut is before/after() : pointcutName()

Refactoring Mechanics

1. Identify the pointcut that should be refactored
2. Introduce the get pointcut refactoring by using the following syntax

pointcut pointcutName(): get(Datatype VariableName)
3. Introduce the get pointcut refactoring by using the following syntax

pointcut pointcutName (Datatype VariableName) : set (Datatype VariableName)
&&args(VariableName)

4. Introduce the “before” and “after” advice for set pointcut by using the following syntax
before/after (Datatype VariableName) :
pointcutName (VariableName)

5. Introduce the “before” and “after” advice for get
pointcut by using the following syntax
before/after() : pointcutName()

6. Test whether the code that is restructured now retains the behaviour

After introducing the get and set pointcuts, we have checked if two classes (super and sub classes) have a variable with
the same name, then does it affect the introduced get and set pointcuts. So in this example, we have a class “NewClass”
which is extended from class “MyClass”. Both have a variable with the name “p2”. While writing advice we have
specified the name of the class, so it executes specifically for that class only. We observed that it does not affect the
get and set pointcuts.

B. Name of the refactoring: Remove the word abstract for the aspect

An aspect which is abstract or concrete can extend a class. An aspect which is abstract or concrete can
implement interfaces. By making use of abstract aspects we are in a position to create units of code that are re-usable.
Some parts of code related to crosscutting implementation have to be done by concrete sub-aspects.
Any pointcut or any method can be marked as abstract by an abstract aspect. By doing so the base aspect can provide
the implementation logic for the crosscutting logic without using the details of an aspect that is specific to a particular
system.
Weaving does not occur in case of an abstract aspect. For weaving to happen, we need concrete aspects. An aspect
should be declared as an abstract aspect if it contains

1. Abstract pointcut Or
2. Abstract method

We can therefore say that abstract aspects are similar to abstract classes. Also if the sub-aspect that is creating using
abstract aspect does not provide the definition for each and every abstract method or abstract pointcut should declare
itself as being abstract.

Refactoring Mechanics

1. Identify the aspect that need to be made abstract
2. Remove the keywords abstract applied to both pointcuts and methods
3. Provide the body for the method as well as pointcut

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404335 7924

4. Test whether the code that is restructured retains the behaviour

Original Code

Here we have a concrete aspect called “ConcreteAspect” that extends the “MyAbstract_Aspect” aspect. The “Concrete
Aspect” has definitions for its abstract method and abstract. In this aspect, we have defined the getVal() pointcut which
will read the value of “i”. Many such sub-aspects can be created. The outcome of this is that the code that is present in
the base aspect is common and shared by the sub-aspects. Therefore the sub-aspects can now have the code that is
specific for a particular application. We have also implemented the abstract method getI()

An abstract aspect is the one that contains
 1. Abstract pointcut and
 2. Abstract method

 Aspects can extend classes and abstract aspects. So we can reuse the aspects that are already written. The
aspects which are abstract implement most of the logic. Here we have defined an abstract aspect that contains abstract
method and abstract pointcut.

Refactored code

The refactoring proposed here is that we want to remove the word abstract for the aspect. For this specific example
when this is done, we get errors that we cannot declare abstract pointcuts and methods So we remove the keywords
abstract applied to both pointcuts and methods. In that case we need to provide the body for the method as well as
pointcut
 So the aspect looks like shown below. Now since this aspect is made a concrete aspect it cannot be extended by
another aspect.

Since the earlier aspect is now concrete we will have to remove the word extends " MyAbstract_Aspect " and
let the functionality be as it is. If this is done the aspect "MyAbstract_Aspect" does not remain re-usable.

III. RESULTS OF THE RESEARCH

A. Name of the refactoring: Make the aspect unprivileged

Time taken to execute the Original Code: 166.6 ms
Time taken to execute the Refactored Code: 146ms
Lines of Code in the Original Code: 11
Lines of Code in the Refactored Code: 20

B. Name of the refactoring: Replace the pointcut name with its designator

Time taken to execute the Original Code: 8 ms
 Time taken to execute the Refactored Code: 8.4ms
Lines of Code in the Original Code: 57
Lines of Code in the Refactored Code: 47

C. Name of the refactoring: Introduce the get and set pointcut, introduce before and after advice

Time taken to execute the Original Code: 12.1 ms
Time taken to execute the Refactored Code: 11.3ms
Lines of Code in the Original Code: 71
Lines of Code in the Refactored Code: 78

D. Name of the refactoring: Remove the word abstract for the aspect
Time taken to execute the Original Code: 151 ms
Time taken to execute the Refactored Code: 146.9 ms

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404335 7925

Lines of Code in the Original Code: 43
Lines of Code in the Refactored Code: 49

Table of Comparison before and after refactoring the code

Graphs indicating the difference between original and refactored code

IV. CONCLUSION

In this paper, we have proposed a set of refactorings for Aspect Oriented Programming using AspectJ. The
refactorings introduced were to make the aspect unprivileged, replace pointcut name with its designator, get and set
pointcut and before and after advice and remove the word abstract from the aspect. The refactorings were applied on
the code and the execution time and number of lines of code were measured. In some cases even if the execution time
decreased, the number of lines of code increased. In the other cases the number of lines of code has decreased but the
execution time has increased. From these experiments, we can note that the behaviour of the system was preserved and
the system executed faster even if the number of lines of code increased. In future we intend to compare the original
code and the refactored code in terms of vocabulary size, number of attributes, number of operations, number of
statements, weighted operations per component etc and present the analysis for the same.

REFERENCES

1. A. Rani and H. Kaur, "Refactoring Methods and Tools", International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 2, no. 12, pp. 256-260, 2012.

2. AkilaDevi R, "ASPECT ORIENTED REFACTORING FOR SOFTWARE MAINTENANCE", International Journal
of Emerging Trends & Technology in Computer Science (IJETTCS), vol. 2, no. 4, pp. 79-84, 2013.

0

20

40

60

80

100

120

140

160

180

LOC (Orig) LOC (Ref) Exec Time
(Orig)

Exec
Time(Ref)

Make the aspect
unprivileged

Replace the pointcut name
with its designator

Introduce the get and set
pointcut, introduce before
and after advice

Remove the word abstract
for the aspect

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404335 7926

3. David W, “Analysing Java System Properties”, Software Composition Group (SCG),Institute of Computer Science and
4. Applied Mathematics,University of Bern, Switzerland, Nov 2013
5. K.Z.N.Winn,"Quantifying and Validation of Changeability and Extensibility for Aspect-Oriented Software", International Conference on

Advances in Engineering and Technology (ICAET'2014), 2014.
6. M. Storzer, U. Eibauer and S. Schoeffmann, "Aspect Mining for Aspect Refactoring: An Experience Report".
7. Muhammad Sarmad Alia et al., "A systematic review of comparative evidence of aspect-oriented programming", Information and

Software Technology, vol. 52, pp. 871-887, 2010.
8. S. Casas and C. F. Zamorano,"Refactoring and AOP under Scrutiny", Computer Science and Engineering, vol. 4, no. 1, pp. 7-16, 2014
9. S. Apel and D. Batory, "How AspectJ is Used: An Analysis of Eleven AspectJ Programs", Department of Informatics and Mathematics

University of Passau, Germany ,2008.
10. Dr. Rizvi and Z. Khanam, "Introduction of Aspect Oriented Techniques for refactoring legacy software", International Journal of

Computer Applications, vol. 1, no. 6, pp. 29-32, 2015.
11. T. Hon and M. Tkatchenko, "Refactoring JQuery with AspectJ: an experience report", 2005.

BIOGRAPHY

Geeta Bagade (Mete), a Master in Computer Science from the University of Pune and currently pursuing her Ph.D in
Computer Science from Bharati Vidyapeeth, Pune has more than 12 years of experience in IT training. She possesses
good technical skills with respect to programming languages as well as databases.

Dr. Shashank Joshi, is a B.E. in Electronics and Telecommunication from Govt. College of Engineering, Pune in
1988. He also completed the M.E. and Ph. D. Degree in Computer Engineering from Bharati Vidyapeeth Deemed
University Pune. He is currently working as the Professor in Computer Engineering Department, Bharati Vidyapeeth
Deemed University, College of Engineering, Pune. His research interests include software engineering. Presently he is
engaged in SDLC and secure software development methodologies. He is a passionate professor with overall
experience of more than 20 yrs.

