

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11590

Detection and Removal of Web Application
Vulnerabilities Using WAP Tool

Sujata Jadhav, Dr. B.K. Sarkar

M.E. Student, Department of Computer Engineering, PVPIT, Pune, India

HOD, Department of Computer Engineering, PVPIT, Pune, India

ABSTRACT: Despite the fact that a vast research exertion on web application security has been continuing for over 10
years, the security of web applications keeps on being a testing issue. A vital part of that issue gets from defenceless
source code, regularly written in perilous dialects like PHP. Source code static examination apparatuses are an answer
for discovers vulnerabilities, yet they have a tendency to create false positives, and require impressive exertion for
developers to physically settle the code. Here investigate the utilization of a blend of techniques to find vulnerabilities
in source code with less false positives. Here join spoil investigation, which discovers hopeful vulnerabilities, with
information mining, to foresee the presence of false positives. This approach unites two methodologies that are
obviously orthogonal: people coding the information about vulnerabilities (for pollute examination), joined with the
apparently orthogonal approach of consequently getting that learning (with machine learning, for information mining).
Given this upgraded type of location, we propose doing programmed code remedy by embeddings settles in the source
code. This approach was executed in the WAP Tool, and an exploratory assessment was performed with a extensive
arrangement of PHP applications. This tool discovered 388 vulnerabilities in 1.4 million lines of code. Its exactness and
accuracy were roughly 5% superior to Php MinerII's and 45% superior to Pixy's.

KEYWORDS: Automatic protection, data mining, false positives, input validation vulnerabilities, software security,
source code static analysis, web applications

I. INTRODUCTION

Here trying to explore an approach for automatically protecting web applications while keeping the programmer in the
loop. The approach consists in analysing the web application source code searching for input validation vulnerabilities
and inserting fixes in the same code to correct these flaws. The programmer is kept in the loop by being allowed to
understand where the vulnerabilities were found and how they were corrected. This contributes directly for the security
of web applications by removing vulnerabilities, and indirectly by letting the programmers learn from their mistakes.
This last aspect is enabled by inserting fixes that follow common security coding practices, so programmers can learn
these practices by seeing the vulnerabilities and how they were removed.
Here explore the use of a novel combination of methods to detect this type of vulnerabilities: static analysis and data
mining. Static analysis is an effective mechanism to find vulnerabilities in source code, but tends to report many false
positives (non-vulnerabilities) due to its undecidability [18]. This problem is particularly difficult with languages such
as PHP that are weakly typed and not formally specified [7]. Therefore, we complement a form of static analysis, taint
analysis, with the use of data mining to predict the existence of false positives. This solution combines two apparently
opposite approaches: humans coding the knowledge about vulnerabilities (for taint analysis) versus automatically
obtaining that knowledge (with supervised machine learning supporting data mining).
To predict the existence of false positives we introduce the novel idea of assessing if the vulnerabilities detected are
false positives using data mining. To do this assessment, we measure attributes of the code that we observed to be
associated with the presence of false positives, and use a combination of the three top-ranking classifiers to flag every
vulnerability as false positive or not. We explore the use of several classifiers:
ID3, C4.5/J48, Random Forest, Random Tree, K-NN, Naïve Bayes, Bayes Net, MLP, SVM, and Logistic Regression.
Moreover, for every vulnerability classified as false positive, we use an induction rule classifier to show which
attributes are associated with it. We explore the JRip, PART, Prism and Ridor induction rule classifiers for this goal.
Classifiers are automatically configured using machine learning based on labeled vulnerability data.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11591

Ensuring that the code correction is done correctly requires assessing that the vulnerabilities are removed and that the
correct behaviour of the application is not modified by the fixes. Here propose using program mutation and regression
testing to confirm, respectively, that the fixes do the function to what they are programmed to (blocking malicious
inputs) and that the application remains working as expected (with benign inputs). Notice that we do not claim that our
approach is able to correct any vulnerability, or to detect it, only the input validation vulnerabilities it is programmed to
deal with.
The paper also describes the design of the Web Application Protection (WAP) tool that implements our approach [1].
WAP analyses and removes input validation vulnerabilities from code1 written in PHP 5, which according to a recent
report is used by more than 77% of the web applications. WAP covers a considerable number of classes of
vulnerabilities: SQL injection (SQLI), cross-site scripting (XSS), remote file inclusion, local file inclusion, directory
traversal/path traversal, source code disclosure, PHP code injection, and OS command injection. The first two continue
to be among the highest positions of the OWASP Top 10 in 2013 [16], whereas the rest are also known to be high risk,
especially in PHP. Currently WAP assumes that the background database is MySQL, DB2 or PostgreSQL. The tool
might be extended with more flaws and databases, but this set is enough to demonstrate the concept. Designing and
implementing WAP was a challenging task. The tool does taint analysis of PHP programs, a form of data flow analysis.
To do a first reduction of the number of false positives, the tool performs global, inter procedural and context-sensitive
analysis, which means that data flows are followed even when they enter new functions and other modules (other files).
This involves the management of several data structures, but also to deal with global variables (that in PHP can appear
anywhere in the code, simply by preceding the name with global or through the $_GLOBALS array) and resolving
module names (which can even contain paths taken from environment variables). Handling object orientation with the
associated inheritance and polymorphism was also a considerable challenge.
Here evaluated the tool experimentally by running it with both simple synthetic code and with 45 open PHP web
applications available in the internet, adding up to more than 6,700 files and 1,380,000 lines of code. Our results
suggest that the tool is capable of finding and correcting the vulnerabilities from the classes it was programmed to
handle. The main contributions of the paper are:
(1) an approach for improving the security of web applications by combining detection and automatic correction of
vulnerabilities in web applications;
(2) combination of taint analysis and data mining techniques to identify vulnerabilities with low false positives;
(3) tool that implements that approach for web applications written in PHP with several database management systems;
(4) a study of the configuration of the data mining component and an experimental evaluation of the tool with a
considerable number of open source PHP applications.

II. REVIEW OF LITERATURE

Web application security[1] is an major issue in today’s internet. A major reason of this status is that many developers
do not have satisfactory knowledge about secure coding, so they leave applications with vulnerabilities. An approach to
solve this issue is to use source code static examination to discover these bugs, but these tools are known to report
numerous false positives that make hard the task of correcting the application. This paper analyses the use of a mixture
of techniques to detect vulnerabilities with less false positives. After an initial step that uses taint analysis to flag
candidate vulnerabilities, our approach uses data mining to predict the existence of false positives. This approach
achieves an exchange off between two obviously inverse methodologies, people coding the knowledge about
vulnerabilities (for taint analysis) versus naturally obtaining that information (with machine learning, for data mining).
Given this more exact type of recognition, we do program code correction by inserting fixes in the source code. The
approach was executed in the WAP tool and an experimental evaluation was performed with a large set of open source
PHP applications.
 Web application security is an important problem[21] in today’s internet. A major cause of this status is that
many programmers do not have adequate knowledge about secure coding, so they leave applications with
vulnerabilities. An approach to solve this problem is to use source code static analysis to find these bugs, but these tools
are known to report many false positives that make hard the task of correcting the application. This paper explores the
use of a hybrid of methods to detect vulnerabilities with less false positives. After an initial step that uses taint analysis
to flag candidate vulnerabilities, this approach uses data mining to predict the existence of false positives. This
approach reaches a trade-off between two ap parently opposite approaches: humans coding the knowledge about

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11592

vulnerabilities (for taint analysis) versus automatically obtaining that knowledge (with machine learning, for data
mining). Given this more precise form of detection, we do au- tomatic code correction by inserting fixes in the source
code. The approach was implemented in the WAP tool 1 and an experimental evaluation was performed with a large set
of open source PHP applications.
 Injection vulnerabilities[22] pose a major threat to application level security. Some of the more common types
are SQL injection, cross site scripting and shell injection vulnerabilities. Existing methods for defending against
injection attacks, that is, attacks exploiting these vulnerabilities, rely heavily on the application developers and are
therefore error-prone. This paper introduces CSSE, a method to detect and prevent injection attacks. CSSE works by
addressing the root cause why such attacks can succeed, namely the ad-hoc serialization of user-provided input. It
provides a platform-enforced separation of channels, using a combination of assignment of metadata to user-provided
input, metadata-preserving string operations and context-sensitive string evaluation. CSSE requires neither application
developer interaction nor application source code modifications. Since only changes to the underlying platform are
needed, it effectively shifts the burden of implementing countermeasures against injection attacks from the many
application developers to the small team of security-savvy platform developers. This method is effective against most
types of injection attacks, and show that it is also less error-prone than other solutions proposed so far. Here have
developed a prototype CSSE implementation for PHP, a platform that is particularly prone to these vulnerabilities. Here
the prototype is used with php BB, a well-known bulletin-board application, to validate our method. CSSE detected and
prevented all the SQL injection attacks could reproduce and incurred only reasonable run-time overhead.
 Fault injection---a key technique[7] for testing the robustness of software systems---ends up rarely being used
in practice, because it is labor-intensive and one needs to choose between performing random injections (which leads to
poor coverage and low representativeness) or systematic testing (which takes a long time to wade through large fault
spaces). As a result, testers of systems with high reliability requirements, such as MySQL, perform fault injection in an
ad-hoc manner, using explicitly-coded injection statements in the base source code and manual triggering of failures.
This paper introduces AFEX, a technique and tool for automating the entire fault injection process, from choosing the
faults to inject, to setting up the environment, performing the injections, and finally characterizing the results of the
tests (e.g., in terms of impact, coverage, and redundancy). The AFEX approach uses a metric-driven search algorithm
that aims to maximize the number of bugs discovered in a fixed amount of time. We applied AFEX to real-world
systems---MySQL, Apache httpd, UNIX utilities, and Mongo DB---and it uncovered new bugs automatically in
considerably less time than other black-box approaches.
 The state of web security remains troubling as web applications continue to be favourite targets of hackers.
Static analysis tools are important mechanisms [23] for programmers to deal with this problem as they search for
vulnerabilities automatically in the application source code, allowing programmers to remove them. However,
developing these tools requires explicitly coding knowledge about how to discover each kind of vulnerability. This
paper presents a new approach in which static analysis tools learn to detect vulnerabilities automatically using machine
learning. The approach uses a sequence model to learn to characterize vulnerabilities based on a set of annotated source
code slices. This model takes into consideration the order in which the code elements appear and are executed in the
slices. The model created can then be used as a static analysis tool to discover and identify vulnerabilities in source
code. The approach was implemented in the DEKANT tool and evaluated experimentally with a set of open source
PHP applications and Word Press plugins, finding 16 zero-day vulnerabilities.

III. SYSTEM ARCHITECTURE

A. The Approach

Data flow security with regards to web applications is the proposed approach, generally worried with the server-side,
which is regularly composed in PHP, Java, or Perl. Attacks against web vulnerabilities can be communicated as far as
infringement of data stream security. The instrument identifies the likelihood of the presence of the data streams spoke
to in the figure, and changes the source code to avert them. The approach can be actualized as a series of steps.

1) Taint Analysis: parse the source code, create abstract syntax tree (AST), doing corrupt examination in view of the
AST, and producing trees depicting hopeful vulnerable control-flow ways (from a entry point to a touchy sink).

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11593

2) Data mining: collecting parameters from the applicant vulnerable control-flow ways, and utilizing the main 3
classifiers to anticipate if every competitor defencelessness is a false positive or not. Within the sight of a false positive,
utilize induction rules to display the connection between the characteristics that ordered it.

3) Code Correction: given the control-stream way trees of vulnerabilities (anticipated not to be false positives),
distinguishing the vulnerabilities, the fixes to embed, and the spots where they must be embedded; surveying the
probabilities of the vulnerabilities being false positives; and adjusting the source code with the fixes.

4) Feedback: giving feedback to the software engineer in view of

the information gathered in the past strides (vulnerable paths, vulnerabilities, fixes, false positive likelihood, and the
characteristics that grouped it as a false positive).

5) Testing: Get higher assurance with two types of testing, particularly program transformation to confirm if the fixes
do their capacity, and relapse testing to check if the conduct of the application continues as before with generous
sources of info.

B. Architecture

Fig. 1 System Architecture : Modules and Data Structures[1]

Fig. 1 demonstrates the engineering that executes steps 1 to 4 of the approach (testing is not spoke to). It is made out of
three modules: code analyser, false positives indicator, and code corrector. The code analyser first parses the PHP
source code, and creates an AST. At that point, it utilizes tree walkers to do pollute investigation, i.e., to track if
information provided by clients through the section focuses achieves touchy sinks without purification. While doing
this examination, the code analyser produces corrupted image tables also, polluted execution way trees for those ways
that connection section focuses to touchy sinks without legitimate cleansing. The false positives indicator proceeds
where the code analyser stops. For each touchy sink that was observed to be come to by polluted input, it tracks the
way from that sink to the section point utilizing the tables and trees just said. Along the track ways (slice candidate
vulnerabilities in the figure), the vectors of traits (instances) are gathered and arranged by the data mining calculation as
genuine positive (real vulnerability), or false positive (not a real vulnerability). Take note of that we utilize the terms
genuine positive what's more, false positive to express that a caution raised by the corrupt analyser is right (real
vulnerability) or off base (not a genuine vulnerability). These terms don't mean the genuine and false positive rates
coming about because of the information mining calculation, which measure its exactness and precision. The code

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11594

corrector picks the ways named genuine positives to flag the spoiled contributions to be sterilized utilizing the tables
and trees said above. The source code is revised by embeddings fixes, e.g., calls to disinfection capacities. The
engineering depicts the approach, however speaks to likewise the engineering of the WAP tool.

IV. SYSTEM ANALYSIS

Fig. 2: Modules

SOFTWARE REQUIREMENTS

• Operating system: Windows XP or Windows 7, Windows 8.
• Coding Language: Java / J2EE (Jsp, Servlet)
• Data Base: My Sql Server
• Documentation: MS Office
• IDE: Eclipse Galileo
• Development Kit: JDK 1.6
• Server: Tomcat 6.0

V. MODULES

 Admin
In this module, admin has to login with valid username and password. After login successful he can do some
operations such as view all user, their details and authorize them , view all owners, their details and authorize them,
view all attackers details(like ip address and host name), view all sql injection vulnerabilities and block them(those who
are execute wrong query), view all file access vulnerabilities of users(those who are used wrong secret key) , view all
blocked data owners , view unblock requests and unblock them, view all secret key requests and generate, view all
users download history, view SQL Injection Vulnerabilities in chart, View number of remote vulnerabilities in chart.

 User
In this module, there are n numbers of users are present. User should register before doing some operations. After
registration successful he can login by using valid user name and password. Login successful he will do some
operations like view profile details, request secret key and view response, search documents and download by entering
secret key.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11595

 Data Owner
In this module, there are n numbers of owners are present. Owner should register before doing some operations. After
registration successful he can login by using valid user name and password. Login successful he will do some
operations like view profile details, Upload documents and generate digital sign, view uploaded documents, verify his
documents and recover if it is attacked, view all on his documents like(downloads and attacked details), Execute SQL
queries if query is incomplete the it is SQL Injection Vulnerabilities.

 Attacker
Attacker searches the documents and edit document by changing content.

VI. CLASSIFIER EVALUATION MATRICS

false positive - FP
true positive - not FP
to express that an alarm raised by the taint analyzer is incorrect (not a real vulnerability) or correct (a real
vulnerability).
The terms, false positive (fp), and true positive (tp)and false negative (fn), and true negative (tn), for the output of the
next stage, FP classifier.
tpp - True positive rate of prediction measures quality of
Classifier:

fpp - False positive rate of prediction measures how the classifier deviates from the correct classification of a candidate
vulnerability as FP:

prfp - Precision of prediction measures the actual FPs
Correctly predicted in terms of the percentage of total number of FPs:

pd - Probability of detection measures how the classifier is
good at detecting real vulnerabilities:

pfd - Probability of false detection measures how the classifier
Deviates from the correct classification of a candidate vulnerability that was a real vulnerability:

prd - Precision of detection measures the actual vulnerabilities (not FPs) that are correctly

predicted in terms of a percentage of the total number of vulnerabilities:

acc - Accuracy measures the total number of instances well
Classified:

pr - Precision measures the actual FPs and vulnerabilities
(not FPs) that are correctly predicted in terms of a percentage
of the total number of cases:

kappa - Kappa statistic measures the concordance between
the classes predicted and observed. It can be stratified into six
categories: worst, bad, reasonable, good, very good, excellent.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11596

VII. IMPLIMENTATION

Fig. 3: User Login

Fig 4: Data Owner Login

Fig. 5: Uploading Documents

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11597

Fig. 6: Viewing Uploaded Documents

VIII. RESULT

 Fig. 7: Verify Documents

Fig. 8: Viewing Vulnerabilities

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11598

IX. CONCLUSION

The paper displays an approach for finding and revising vulnerabilities in web applications and a device that actualizes
the approach for PHP projects and information approval vulnerabilities. The approach and the device scan for
vulnerabilities utilizing a blend of two methods: static source code examination and information mining. Information
mining is utilized to recognize false positives utilizing a main 3 of machine learning classifiers and to legitimize their
nearness utilizing an enlistment lead classifier. All classifiers were chosen after an intensive correlation of a few
choices. Note that this blend of location systems can't give totally rectify comes about. The static investigation issue is
undecidable and the fall back on information mining can't bypass this un decidability, just give probabilistic outcomes.
The instrument adjusts the code by embeddings fixes, i.e., disinfection and approval capacities. Testing is utilized to
check if the fixes really expel the vulnerabilities and don't trade off the (right) conduct of the applications. The
apparatus was explored different avenues regarding engineered code with vulnerabilities embedded deliberately and
with a significant number of open source PHP applications. It was additionally contrasted and two source code
investigation devices, Pixy and PhpMinerII. This assessment proposes that the apparatus can distinguish and remedy
the vulnerabilities of the classes it is modified to handle. It could discover 388 vulnerabilities in 1.4 million lines of
code. Its exactness and accuracy were around 5% superior to PhpMinerII's and 45% superior to Pixy's.
Future work will be on the intrusion detection systems in the cloud environment, because cloud computing is the trend,
and is a major paradigm shift of computer systems.
The future work can be extended by using the combination of two or more tools of vulnerability detection. Due to
which the disadvantages of one will be overcome by another. For e. g: The supervised learning technique is suitable
where the past data is completely available whereas the semi-supervised learning is not adequate for this. It works
efficiently on partially available data. This hybrid approach will lead to decrease in false positive and false negative
rates.

X. ACKNOWLEDGMENT

It is our privileges to acknowledge with deep sense of gratitude to the people who directly or indirectly help us from
their valuable suggestions and guidance throughout our course of study and timely help given to us in completion of
our work.
We are highly obliged to the entire staff of the Computer Engg. Department of PVPIT College of Engg. for their kind
co operation and help.
I also take this opportunity to thanks my colleague, who backed our interest by giving useful suggestions and all
possible help.

REFERENCES

1. Ibéria Medeiros, Nuno Neves and Miguel Correia, “Detecting and Removing Web Application Vulnerabilities with Static Analysis and Data

Mining” vol. 65,pp/ 54 – 69, IEEE Transactions 2016.
2. Hong Zhu and Yufeng Zhang ,”A Test Automation Framework for Collaborative Testing of Web Service Dynamic Compositions”, Vol. 5, no.

1, pp: 116 - 130, 2012.
3. T. Pietraszek and C. V. Berghe, “Defending against injection attacks through context-sensitive string evaluation,” in Proc. 8th Int. Conf. Recent

Advances in Intrusion Detection, 2005, pp. 124–145.
4. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating complexity, code churn, developer activity metrics as indicators of software

vulnerabilities,” IEEE Trans. Software Eng., vol. 37, no. 6, pp. 772–787, 2011.
5. J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R. Neves, “Vulnerability removal with attack injection,” IEEE Trans. Softw. Eng., vol.

36, no. 3, pp. 357–370, 2010.
6. W. Halfond and A. Orso, “AMNESIA: analysis and monitoring for neutralizing SQL-injection attacks,” in Proc. 20th IEEE/ACM Int. Conf.

Automated Software Engineering, Nov. 2005, pp. 174–183.
7. R. Banabic and G. Candea, “Fast black-box testing of system recovery code,” in Proc. 7th ACM Eur. Conf. Computer Systems, 2012, pp. 281–

294.
8. Y.-W. Huang et al., “Web application security assessment by fault injection and behavior monitoring,” in Proc. 12th Int. Conf. World Wide

Web, 2003, pp. 148–159.
9. Y.-W. Huang et al., “Securing web application code by static analysis and runtime protection,” in Proc. 13th Int. Conf. World Wide Web, 2004,

pp. 40–52.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 6, June 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0506104 11599

10. N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static detection of web application vulnerabilities,” in Proc. 2006 Workshop
Programming Languages and Analysis for Security, Jun. 2006, pp. 27–36.

11. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format string vulnerabilities with type qualifiers,” in Proc. 10th USENIX
Security Symp., Aug. 2001, vol. 10, pp. 16–16.

12. W. Landi, “Undecidability of static analysis,” ACM Lett. Program. Lang. Syst., vol. 1, no. 4, pp. 323–337, 1992.
13. N. L. de Poel, “Automated security review of PHP web applications with static code analysis,” M.S. thesis, State Univ. Groningen, Groningen,

The Netherlands, May 2010.
14. WAP tool website [Online]. Available: http://awap.sourceforge.net/
15. Imperva, Hacker intelligence initiative, monthly trend report #8, Apr. 2012.
16. E. Merlo, D. Letarte, and G. Antoniol, “Automated Protection of PHP Applications Against SQL Injection Attacks,” in Proc. 11th Eur. Conf.

Software Maintenance and Reengineering, Mar. 2007, pp. 191–202.
17. R. S. Sandhu, “Lattice-based access control models,” IEEE Comput., vol. 26, no. 11, pp. 9–19, 1993.
18. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, 2003.
19. J. C. Huang, Software Error Detection through Testing and Analysis. New York, NY, USA: Wiley, 2009.
20. L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns for predicting SQL injection and cross site scripting vulnerabilities,” in Proc.

34th Int. Conf. Software Engineering, 2012, pp. 1293–1296.
21. Ibéria Medeiros, Nuno F. Neves, Miguel Correia “Automatic Detection and Correction of Web Application Vulnerabilities using Data Mining

to Predict False Positives” Proceedings of the 23rd international conference on world wide web Pages 63-74 ACM 2014
22. Tadeusz Pietraszek, Chris Vanden Berghe, “Defending against injection attacks through context-sensitive string evaluation”, ACM 2005,

RAID'05 Proceedings of the 8th international conference on Recent Advances in Intrusion Detection, Pages 124-145
23. Ibéria Medeiros, Nuno Neves, “DEKANT: a static analysis tool that learns to detect web application vulnerabilities”, ISSTA 2016 Proceedings

of the 25th International Symposium on Software Testing and Analysis, Pages 1-11

BIOGRAPHY

 Sujata Jadhav Student of Master of Engineering in Computer Engineering from the PVPIT college of engineering
pune.

Prof. B.K. Sarkar HOD at the PVPIT college of engineering, Pune for the Department of Computer Engineering

http://www.ijircce.com
http://awap.sourceforge.net/

