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ABSTRACT: The discovery of software faults at early stages plays an important role in improving software quality; 

reduce the costs, time, and effort that should be spent on software development. Machine learning (ML) have been 

widely used in the software faults prediction (SFP), ML algorithms provide varying results in terms of predicting 

software fault. Deep learning achieves remarkable performance in various areas such as computer vision, natural 

language processing, speech recognition, and other fields. In this study, two deep learning algorithms are studied, 

Multi-layer perceptron’s (MLPs) and Convolutional Neural Network (CNN) to address the factors that might have an 

influence on the performance of both algorithms. The experiment results show how modifying parameters is directly 

affecting the resulting improvement, these parameters are manipulated until the optimal number for each of them is 

reached. Moreover, the experiments show that the effect of modifying parameters had an important role in prediction 

performance, which reached a high rate in comparison with the traditional ML algorithm. To validate our assumptions, 

the experiments are conducted on four common NASA datasets. The result shows how the addressed factors might 
increase or decrease the fault detection rate measurement. The improvement rate was as follows up to 43.5% for PC1, 

8% for KC1, 18% for KC2 and 76.5% for CM1 

 

I. INTRODUCTION 

 

Developing high-quality software is one of the most challenges for software engineers. For that, software development 

should pass through a sequence of activities under certain constraints to come up with reliable and high quality 

software. A major drawback to having good quality and reliablesoftware is the occurrences of faults, where faults 

degraded the software quality and become unreliable end products also not acquire customer satisfaction. Reference [1] 

In order to achieve high-quality software, suitable planning, and control of software development cycle measures must 

be followed. The existence of faults is inevitable and it might occur in various phases of software development. One of 

the quality models that help to reduce software failure is Software fault prediction that also helps to avoid learning may 
provide valuable improvement in software fault prediction. 

 

II. LITERATURE REVIEW 

 

In this section, we review the most important relevant studiesthat focused on SFP and discussed the previous results for 

the stat-of-art, which used ML, NN, and Deep Learning. There are many studies improved software quality, and 

making better use of resources, and reducing or eliminating fault.Therefore, it is necessary to explore these researches 

to ensure understanding of the aspects of SFP. 

 

A. MACHINE LEARNING 

 
The following techniques use a clustering model to predict the fault for the unsupervised data. They suggest and 

evaluate new algorithms, such as K-Sorensen-means clustering, which is a new SFP clustering algorithm for K-means, 

using Sorensen distance to calculate cluster distance. JM1, PC1, 

and CM1 are three datasets subject to the proposed approach. 

 

B. NEURAL NETWORK APPROACH 

 

Usually, neural networks consist of three components. The first is neurons. It is simple computing cells. Each neuron 

can receive input signals, process the signals and finally produce an output signal. Neural networks employ a massive 

interconnection between them to achieve good performance.shows the model of a neuron that has a set connecting 

links, each of which is characterized by weight, an adder for summing the input and an activation function.The second 
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component is network architecture. The feedforward network is the most common type of neural network architecture 

that is composed of an input layer, a hidden layer, and an output layer. In a Feed-forward network the information 

moves forward in the neural network from leftto right, from the input nodes, through the hidden layers to the output 

nodes as shown in Figure 3. The third is a learning algorithm that is used during the learning processes to describe a 
process that adjusts the weights of the network to reduce the errors of the outputs. 

 

C. DEEP LEARNING 

 

 propose Defect Prediction via Convolutional Neural Network (DP-CNN). CNN is used to automatically learn the 

semantic and structural features of programs.The approach contains four phases, starting with Abstract Syntax Trees 

(ASTs) which is used to extract tokens thatare encoded into numerical vectors. Then it employs CNN and combines it 

with traditional defect prediction features. Finally, it uses the Logistic Regression to decide if the 

code files are having buggies or not. The experiments were made over seven open source projects and show that the 

DP-CNN improves the state-of-the-art method on average 12%. Dam et al. [19] develop a prediction model able to 

learn features automatically for representing source codethat has been used for defect prediction. They use a 

treestructured Long Short- Term Memory network (LSTM) that matches directly with the Abstract Syntax Tree 
representation of source code (ASTs). The model is built as a treestructured network of LSTM units to reflect better 

syntacticand many levels of semantics in source code 

 

III. PROPOSED METHODOLOGY 

 

In this section, we started to review the basic design steps,which required using MLPs and CNN for software faults 

prediction using the NASA datasets. The methodology steps,we started with selected four datasets with various fault 

percentage, then normalized for these datasets as preprocessing steps. The MLP is applied initially, and modify its 

parameters to measure the performance for it.Finally, we compared the results to find the best results achieved and 

applied the same steps for CNN. The MLP and CNN algorithms are implemented on python 3.6 languagebased on 

many libraries (such as Keras, Numpy, Panda and Sklearn, Matplotlib) to perform the experiments. Thereupon, each 
step is discussed in greater details in the subsequentsubsections. An overview of our proposed methodology and the 

pseudo code are presented in in Figure 5 and 6 respectively. 

 

 
 

 

IV. DATA COLLECTION 

 

A. SELECT DATASET 

 

The datasets are selected from the NASA Metrics Data Program (MDP), include software measurement data and 
associated error data collected. NASA MDP dataset is made publicly available in order to encourage repeatable, 

verifiable, refutable, and/or improvable predictive models of software engineering. The datasets have been heavily used 

in software defect prediction experiments. The data sets’ characteristics are presented in table 1. The attributes of the 

datasets are shown in Table 2. 
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B. NORMALIZATION 

 

Normalization is used with numerical attributes that can find new ranges from an existing range based on an equation. 

It is performed during the preprocessing step, useful for classification algorithms as NN, and distance measurements as 

(KNN, clustering). This study applied the standardization method such that the attributes preserve the normal 

distribution. Standardization is a useful technique to transform attributes with a Gaussian Distribution and differing 

means and distribution. In Python, we use a Standard Scaler from scikit-learn library. 

 

C. APPLYING DEEP LEARNING ALGORITHMS 

 

In this phase, we applied two algorithms (MLPs and CNN) to address their abilities in enhancing the accuracy of SFP 

and determined the factor affecting the performance. In this step, we will select the various numbers of layers, different 
functions and different hyperparameters on each experiment.  

Then we repeat the process until we get a satisfactory result. 

 

D. MODIFY MODEL PARAMETERS 

 

The settings which have to be defined for the network include hyper-parameter activation function, number of layers in 

each layer and hyper-parameter. 

 

E. COMPARISON 

 

A comparison will be conducted in order to determine the effectiveness of manipulating the studied parameters 

(hyperparameter, number of layers and neurons, activation , function). 

 

F. DATA ANALYSIS & INTERPRETATION 

 

This study performs a comparison of deep learning algorithms in terms of classification accuracy. In addition to use, 

Detection rate and TNR, that is computed by considering the positive and negative prediction of objects. The 

performance measures are computed through the following equations 

 

G. HARDWARE SPECIFICATION 

 

While working on the implementation, two machines were used in accordance to the time needed for testing. The first 

one, a personal laptop, was used primarily for conducting small tests that take short time. The second machine, a virtual 
machine loaned from the Computer Centre, was used primarily for long testing purposes. 
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V. EXPERIMENTAL RESULTS 

 

The implementation of the MLPs and CNN is done in Python 3.6.5 using Keras Frameworks. In addition, Numpy, 

Panda and Sklearn libraries were used. Visualization is done using the Matplotlib library and Spyder served as the 

development environment. This work has developed without separation between the modification of the network and 

the implementation of the network. We had tried more than two hundred experiments with different (hyper-parameter, 

activation function and a number of layers). Experiments cover the modification of the model parameters used to 

improve the results. The following sub-sections present the results obtained 

 
 

 

A. MLPS RESULT 

 

To address the effect of (number of epoch, batch size, dropout rate, Optimizer, number of layers, activation function) 

the proposed approach achieved the following results by MLPs 
algorithms as described in tables 3 - 8. 

NUMBER OF EPOCH In order to examine the effect of a number of the epoch, we performed the following 

experiment in MLPs as described in table 3. 

BATCH SIZE In order to examine the effect of batch size, we performed the following experiments as describedin 

table 4. 

DROPOUT RATE In order to examine the effect of the dropout rate, we performed the following experiments as 

described in table 5. 

OPTIMIZER In order to examine the effect of Optimizer, we performed the following experiments as described in 

table 6. 

 adgrad gave better accuracy and Detection rate values. NUMBER OF LAYERS In order to examine the effect of a 

number of layers, we performed the following experiments 

as described in table 7. 
ACTIVATION FUNCTION In order to examine the effect 

of activation function, we performed the following experiments as described in table 8. 
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B. CNN RESULT 
To address the effect of (number of epoch, batch size, number of layers, activation function) the proposed approach 

achieved the following results by MLPs algorithms as 

described in table 9, 10, 11. NUMBER OF EPOCH In order to examine the effect of the number of the epoch, we 

performed the following experiment on CNN as described in table 9. 

BATCH SIZE In order to examine the effect of batch size, we performed the following experiment on CNN as 

described in table 10. 

NUMBER OF LAYERS In order to examine the effect of a number of layers, we performed the following experiment 

on CNN as described in table 11. 

 

 
 

 

C. COMPARISON 
COMPARISON IN TERMS OF PERFORMANCE Metrics Table 12 shows the best results we obtained from both 

algorithms. The results show a clear advantage for CNN. COMPARISON IN TERM OF TIME AND NUMBER OF 
EXPERIMENTS Table 13 shows the difference in effort in 

terms of the number and time of experiments to obtain the satisfactory results of both algorithms. 

As a summary of MLPs and CNN experiments, Tables 14 and 15 present improvements on results as parameters 

changed based on the detection rate. 
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VI. CONCLUSION AND FUTURE WORK 
 

 

Machine learning is widely used in the area of prediction, one of the most promising subset is deep learning, the 

researchers prove that how deep learning achieves tangible performance in terms of prediction in various fields as 

computer vision, natural language processing, bioinformatics and software engineering etc. In this article, authors 

aimed to concentrate on answering two main research questions, Does the manipulating algorithms parameter could 

lead to introduce any performance enhancement in terms of accuracy?, Which of the studied deep learning algorithms 

provide the best SFP performance? The main essence of this study is to investigate the factors that have a tangible 

effect on the performance of the studied deep learning algorithms in the field of the SFP. 
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