

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6484

A Trust Management System for Secure
Sharing of Data in Cloud Storage

Sumiti Joshi, Shiv Dubey
M.Tech Scholar, Dept. of C.S.E., AITR, RGPV University, Indore, M.P, India

Assistant Professor, Dept. of C.S.E., AITR, RGPV University, Indore, M.P, India

ABSTRACT: Nowadays every individual and organization required their digitized data in an on-demand manner.
Therefore, everyone begins expanding their data on the hosting servers so that they can access the information
whenever necessary. In addition, of that to reduce the maintenance cost of data management and also to secure data for
a long time, the cloud servers outsource data to other third party servers. In order to preserve data on the third party
server cryptographic techniques are beneficial. But during the retrieval of data and in order to regulate the data access
mechanism, improved trust management approach is needed between two data exchanging parties.
Thus, using data preserving and trust management techniques a new system has been developed. The given
methodology includes the implementation of data storage services and their sharing mechanism for outsourcing and
offshoring process during data exchange. In further the technique is extended with the development of a digital
envelope using AES and a version of SHA-2 algorithms, i.e., SHA-256 algorithm to secure data in network and storage
during data sharing and exchange. In order to keep track, regarding the trust of the connecting parties, a trust evaluation
technique is also associated with the system. The trust evaluation of the data accessing system is computed using the
weighted method on the basis of three factors, that is Time, User rating and History behavior.
Finally, the implementation of the work is performed using JAVA technology. In addition to that, after the
implementation and analysis of the system, to ensure the authenticity of the work the performance of the cryptographic
system is evaluated and compared to the traditional hybrid cryptographic system in terms of time and memory.
Furthermore, the service of Red Hat’s Platform-as-a-service (PaaS) namely Open Shift is also used for deploying the
given implementation of public clouds. The tentative results show the effectiveness and efficient methodology for data
exchange with multi-party trusted environment.

KEYWORDS: Cloud Storage; Data Outsourcing; Security; Trust Management; Digital Envelope

I. INTRODUCTION

In this age of the internet, the vast majority of the applications have become online. These applications serve the data

and services to the end users in an uninterrupted manner. Thus, each and every fraction of seconds a huge amount of
requests is generated to find data, logic or any services. In order to handle such huge request traditional computing
becomes out-dated and distributed computing takes place. These are the huge computational and storage infrastructure
that supports the frequent changing data and requests. To manage and diminish the complexity of data storage on the
local servers the cloud providers outsource their data to other third party servers.

The outsourcing of data needs some techniques to improve the security, transparency and trust to host the data and
access the stored data on demand. In this presented work the data outsourcing concept and sharing of data in an
efficient and trusted manner are investigated. Additionally, a new concept which improves the data access, sharing and
storage is demonstrated. Thus, for the modern scenario, there is a need for a new security technique along with the trust
assurances to keep information secure from unauthorized hosts. Therefore, the following challenges are needed to be
dealt with during the implementation of the presented work:

 Identity Management
 Privacy Management
 Trust Management
 Data Exchange Security and Data Redundancy Management

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6485

II. RELATED WORK

In [1] authors outsourced the Personal Health Record (PHR) to a third-party cloud provider where privacy is a

primary concern. Thus, they propose a new patient-centric architecture for data access control in semi-trusted servers
by using Attribute-Based Encryption (ABE) techniques to encrypt data which focuses on the multiple data owner and
security domains that diminish key management complexity for owners and clients along with an efficient on-demand
client or attribute repudiation and break-glass access under emergency situations. In [2] authors consider a multi-factors
feature of trust to propose an access control model which consists of multi-factors trust computation, a feedback
module, and permission mapping which is appropriate for access control in dynamic situations. In [3] authors give an
overall security viewpoint of Cloud computing with the mean to highlight the security worries that should be
systematically addressed and figured out how to understand the maximum capacity of Cloud computing. In [4] authors
propose a multi-faceted Trust Management (TM) framework for building design for a cloud computing commercial
center to recognize the trustworthy cloud suppliers in terms of different traits (e.g., Security, performance, consistency).
In [5] authors introduce a trust administration, architecture which comprises of a Cloud System Registry and Discovery
that is cloud supplier’s registry and records their particular trust values, a trust calculator that computes CSP's trust in
view of inputs of two parameters to be specific SLA and QoS. In [6] authors explored the properties of trust, proposed
goals of the IOT trust administration, and give an overview of the present writing advances towards reliable it. Besides,
it examines unsolved issues, determine research challenges and demonstrate future exploration patterns by proposing
an examination model for all encompassing trust management in it. In [7] authors made an endeavor to plan and
simulate a system in MATLAB to compute the reliability of service suppliers in light of their consistency to guarantee
SLA parameters, utilizing a synthetic data set. In [8] authors utilize a trust model which measures the security, quality
and registers a trust, esteem that contains different parameters that are vital measurements along which security of
cloud administrations can be measured. CSA (Cloud Service Alliance) service difficulties are also utilized to evaluate
the security of an administration and legitimacy of the model. In [9] authors endeavor to call attention to different
procedures to settle the protection and security issues of the information out in the public auditing scheme in a cloud
environment.

III. PROPOSED METHODOLOGY AND DISCUSSION

A. Algorithm Used:

 This section includes the various algorithms and a concept that is involved in the designing of a trust based secure
data sharing model.
AES Algorithm
 The acronym AES stands for Advanced Encryption Standard (AES) which is a symmetric encryption created by
Joan Daemen and Vincent Rijmen. AES is most commonly utilized encryption algorithm today, which depends on a
few permutations, substitutions and linear transformation, each executed on data squares of 16 bytes. Starting today, no
feasible attack against AES exists. Along these lines, AES remains the favored encryption standard for governments,
banks and high-security frameworks around the globe. It is valuable when we need to encode a private content into an
unreadable format, for instance, when we have to send sensitive information in an email. The decryption of the encoded
content has been conceivable just on the off chance that we know the right password.
 The time needed to break an encryption algorithm is straight-identified by the length of the key used to secure the
communication. AES permits choosing a different kind of bits such as the 128-bit, 192-bit or 256-bit key, making it
rapidly more powerful than the 56-bit key of DES. AES is an iterative as opposed to a Feistel cipher. It depends on
substitution–permutation system. It contains a progression of connected operations, some of which include replacing
inputs by particular outputs (substitutions) and others include rearranging bits around (permutations).
The First Step:

 Add Round Key
The Following four functions are repeated periodically:

 Sub Byte
 Shift Row
 Mix Column
 Add Round Key

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6486

Final Step:
 Sub Byte
 Shift Row
 Add Round Key [10]

Fig. 1. The overall structure of AES with 128 bit key [10] Fig. 2. One round of encryption and decryption [10]

Secure Hash Algorithm-256 (SHA-256)
 SHA known as Secure Hash Algorithm (SHA) was outlined by NIST and NSA in 1993, which was modified in 1995
as SHA-1. Later SHA-2 was developed. SHA-2 is a typical name for four extra hash works additionally known as
SHA-224, SHA-256, SHA-384, and SHA-512.Their su�x begins from the bit length of the message digest they
deliver. The variants with length 224 and 384 are acquired by truncating the outcome from SHA-256 and SHA-512
separately. SHA-256 uses a block size of 512 bits and repeats 64 rounds while SHA-512 uses a 1024 bit block size and
has 80 rounds. The SHA-2 algorithms take over the same structure of message extension and iterated state update,
change as SHA-1 however, both message development and state upgrade change are significantly more complex. SHA-
256 uses sixty-four constants K0,.., K63 of 32 bits each and eight registers to store halfway results H0, .., H7. The
capacity definitions for SHA-256 are [11]:

W [t] = M [t], if 0 ≤ t ≤ 15
 σ1 (W [t] −2) + W[t] −7 + σ0 (W[t] −15) + W[t] −16, if 16 ≤ t≤ 63

With,

Σ0(x) = x >>>2⊕x >>> 13⊕x>>> 22
Σ1(x) = x >>>6⊕x>>> 11⊕x>>>25
σ0(x) = x>>> 7⊕x>>> 18⊕x >>3

σ1(x) = x>>> 17⊕x>>> 19⊕x>>20
and

f [IF] (e, f, g) = e∧f⊕¬e∧g
f[maj] (a,b,c) = a∧b ⊕ a∧c ⊕b∧c

SHA -256 Algorithm:
SHA-256 (M):
 (* Let M be the message to be hashed *)
 for each 512-bit block B in M do
 W = f [exp] (B);
 (* Initialize the registers with the constants. *)
 a = H0; b = H1; c = H2; d = H3; e = H4; f = H5; g = H6; h = H7;
 for t = 0 to 63 do
 (* Apply the 64 rounds of mixing. *)
 S1 = h +Σ1(e)+ f[IF](e,f,g)+ K[t]+ W[t];

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6487

 S2 = Σ0(a)+ f[maj](a,b,c);
 h = g; g = f; f = e; e = d + S1; d = c; c = b; b = a; a = S1 + S2;
 (* After all the rounds, save the values in preparation of the next data block. *)
 H0 = a + H0; H1 = b + H1; H2 = c + H2; H3 = d + H3;
 H4 = e + H4; H5 = e + H5; H6 = e + H6; H7 = e + H7;
 (* After all, 512-bit blocks have been processed, return the hash. *)
 return concat(H0, H1, H2, H3, H4, H5, H6, H7); [11]

Fig.3. Single SHA-256 Iteration [11]
B. Proposed Methodology:
 In order to solve the above challenges and issues related to trust and security, an end to end system for managing
and sharing data in cloud storage has been developed. Therefore, in the first step, a data outsourcing system is
developed according to fig. 4. The given system development is divided into two modules first the primary server that
has the data storage capability and the secondary server that utilizes the storage from the primary server. The involved
data exchange process and access of data provide the demonstration of security and identity management. The involved
components of the system are described as:

 Primary Server: It is used as storage service provider which provides the hosting service for the outsourced
data. Additionally, it implements the data storage, off sourcing and outsourcing services to their clients.

 User Management: In primary server the user or data owner hosts their own personal data; therefore, it needs
to create their membership with the server. According to their membership policy user can host their data.

 User Data Manager: It is a personalized service provided to the client where the user hosts their data and
keeps on track their data according to their needs.

 Utility Manager: A utility manager supports the data upload, download, share and exchange data to the third
party under the directions of the data owner.

 Secondary Server: In order to simulate the security management the secondary server is also established
with the similar functions. The users of the secondary server, send a request to the primary server for data
storage and on-demand data access.

 Data Requirement: The data owner’s need their own data to access therefore some processes are
implemented to upload, download, and sharing of the data hosted on the primary server. During this process
security technique is initiated to manage the personalization of data, trust computation, and channel security.

 Data Exchange: In order to keep a track, the security and privacy management for data exchange service
among both the parties (i.e. A primary server and secondary server), is implemented that contains two sub-
components in the system.

 Trust manager: This component is used to compute the trust among both the parties, if the computed trust
value found, adaptable then access to the system or data is provided to exchange the data.

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6488

Fig. 4. Proposed Methodology

Proposed Digital Envelope
 Cryptography is basically classified as asymmetric key cryptography and symmetric key cryptography. Both types of
approaches have their respective pros and cons, but individually both the mechanisms do not solve all the problems
related to security. Thus, combining the two approaches result in the development of Digital Envelope. Digital
Envelope helps to solve the security threats in cloud computing. The basic concept of a digital envelope is such that for
encryption of the data, the symmetric key algorithm is used in which encryption is performed with a one-time
symmetric key and the asymmetric key is used to encrypt the session key or one-time symmetric key.
Thus, using the concept of Digital envelope, in the proposed work a data envelope or either a digital envelope is created
using AES algorithm and SHA-256 algorithm. The reason for using AES and SHA-256 algorithms is it is not easy to
attack the data encrypted by this algorithm thus providing high security of data. To securely deliver data between both
the parties in cloud storage a cryptographic system is implemented. The overview of the proposed cryptographic data
exchange technique is given in fig. 5. The steps involved in the creation of Digital Envelope are:

 The implemented digital envelope first computes the key for the requested data, by the secondary server.
 In the key generation process, the data are produced by the SHA-256 algorithm that returns the 256-bit hash

code.
 In the next step of this 256-bit hash code, the hash splitting process is performed such that 256 bits are further

divided into two parts of 128 bits each.
 Now in this step the first part of the hash code, i.e., 128 bits are used to encrypt the data, thus, it is working as

a key in the AES algorithm.
 Now the encryption of data is performed using an AES algorithm and a key of 128 bits.
 In the next phase, after encryption of data, the generated ciphertext is divided into chunks of 128 bits by a

chunk generator. Since the process of trust computation takes some additional time in the system and also for
the security of the data the generated ciphertext is divided into small chunks instead of sending in bulk so that
it can be transmitted faster as chunks of small size will take less time.

 After the chunk generation processes, the chunks of data are XOR with the remaining 128-bit key parts
generated by the SHA-256 Algorithm. XOR has been utilized to check information sent over a system, such
that there have been no changes made in the transmitted data.

 In the final step, the XORed data are incorporated into a file and ready to transmit to the secondary server.
Proposed Trust Computation Model
 Trust plays a very vital role for secure sharing of data in cloud storage. There have been different methodologies that
have been used earlier for trust calculation. In the proposed approach, the motivation is from the concept of multi-
factors trust model for the access control [2]. Thus, a new model for trust computation has been presented in this work.
In this model for calculating the trust, a Normalized approach has been followed by taking 3 factors. Such as:

 Time
 User Rating
 Average Trust or History Behavior

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6489

Fig. 5. Proposed Digital Envelope

Time factor depends on the time which a server took in response to the request usually in Milliseconds (ms). User
rating is the rating given by the user on the basis of the performance of the server, usually value lying between 1 to 5
such that 1 for the worst and 5 for the best. History behavior indicates the average of all the trust value. Initially, Trust
value has been taken as 1.
The reason for doing this is because in this model a 50% of the opportunity is given to the server to be accessible or
trustworthy. It is observed that trust is inversely proportional to time, i.e., larger the server takes the time to respond
lesser is the trust value. So,

Trust α 1

 Time
Similarly, the trust is directly proportional to user rating and average trust, i.e., better is the user rating and average trust
value more the server is trustworthy. So,

Trust α User Rating
And,

Trust α Average Trust or History Behavior
Hence, a server will be trusted only if it takes less time to respond and have a good user rating. Thus, the sum of all the
3 factors generates the Calculated Trust [Cal_Trust]. Thus, these three factors will standardize in the process of
Normalization such that the values will normalize between |0-1|. The normalized value of Time, User Rating and
Average Trust is denoted as Time_factor, User_rating_factor, Average_Trust respectively.
Here in the computation of trust value, 60% of Average Trust and 20% each of both Time and User rating have been
considered. The reason behind giving highest weighting to past history i.e. Average Trust is it considered all the trust
value obtained from the system. Thus, values for Average trust (a1), User rating (a2) and Time (a3) are 0.6, 0.2 and 0.2
respectively.The reason for this classification of values is because the sum of all the factors of the trust computation
should be unity, i.e., 1 (one) [2]. Thus,

a1+a2+a3=1;
Where, a1=0.6; a2=0.2;a3=0.2
The normalized values have been appeared in the tables below. Thus, trust will be calculated (Cal_Trust) by the
following formula:

Cal_Trust = (a1 * Average_Trust) + (a2 * User_rating_factor) + (a3 * Time_factor);

 Table 1. Trust values corresponding to Normalized Average_Trust
Normalized Average_Trust/History Behavior = Average of all the previous trust calculations

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6490

Table 2. Trust values corresponding to Normalized Time_factor
Time Interval [0-0.5] [0.5-1] [1-1.5] >1.5

Normalized_Value 0.9 0.7 0.5 0.3

Table 3. Trust values corresponding to Normalized User_rating_factor
User Rating 0 1 2 3 4 5

Normalized_Value 0 0.2 0.4 0.6 0.8 1

Proposed Work
 Thus, whenever data is transmitted from one server to another or shared between two servers in cloud storage security
and trust management must be present. In the proposed work, this has been simulated with two servers. Suppose
secondary server required some data from the primary server, so it sends a request to the primary server for the desired
data. During this phase the proposed trust management system for secure sharing is initiated:
Firstly the trust manager computes the trust value with the proposed trust computation model. For example, as
discussed above the values of a1, a2, a3 are 0.6, 0.2 and 0.2 respectively. Suppose an average of past trust computation
is 0.59, user rating by the user is 3 and time for the response from the server are 1.7 ms then the normalized value for
average trust, user rating and time are 0.59, 0.6, 0.3 respectively. So value of total trust is:
Cal_Trust = (a1 * Average_Trust) + (a2 * user_rating_factor) + (a3 * time_factor);
 =(0.6 *0.59) + (0.2 *0.6) + (0.2*0.3)
 = 0.354+0.12+0.06
 =0.534
In the next step, the computed trust value is compared with a threshold value. A Threshold Value has been set to:

Threshold_Value= 0.5.
The threshold value is the point of trust rating, which is statically fixed to 0.5 and can vary between 0-1. So, if value of

Cal_trust >0.5
Then permission will be granted to the system to perform the activities and the data is outsourced or off sourced but if

Cal_Trust <0.5
Then the function of the system will be blocked and all its rights will be taken and an admin will recheck it. So if the
server is found trustworthy, then the digital envelope is created as discussed above to secure the data required by the
secondary server. Finally, the data is exchanged securely with the help of the proposed digital envelope and provided to
the desired secondary server.

IV. SIMULATION RESULTS

 The experimental evaluation and the system performance are computed and demonstrated in this chapter. Here, the
proposed work which is a combination of AES and the SHA-256 algorithm is compared with a hybrid algorithm which
is a combination of DES and MD-5 algorithms. Therefore, some essential performance parameters are evaluated and
listed with their obtained observations.
Encryption Time
The amount of time required to perform encryption using the selected algorithm is termed as the encryption time of the
cryptosystem. The encryption time in milliseconds (ms) of the proposed and traditional system is demonstrated using
fig. 6 and table 4. In this diagram the X- axis shows the different file size in KB, which is shown in table 4 on which
the experiment is performed and the Y-axis shows the amount of time in milliseconds consumed for processing the
input file. Additionally, the performance of the proposed system is shown using blue line and the performance of the
traditional method is shown using the red line. According to the given results, the proposed system consumes less time
as compared to traditional systems. Additionally, the results show the amount of time consumed depends on the amount
of data provided for execution. But the respective performance of the system shows their effectiveness over the
traditional system.
Decryption Time
The amount of time required to recover the actual data from the ciphertext is known as the decryption time of the
algorithms. The fig. 7 and table 5 shows the obtained performance of the system in terms of decryption time. The blue
line shows the performance of the proposed method and the red line shows the performance of the traditional method.
In the given fig. 7, X -axis shows the different file size in KB, which is shown in table 5 on which the experiments are

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6491

performed and the Y-axis shows the amount of time consumed in milliseconds (ms). According to the observations, the
encryption time is higher than the decryption time in both the system, but the decryption time of the proposed system is
much adaptable than the traditional system.

 Table 4. Encryption Time Values

Fig. 6. Comparison on the basis of Encryption Time

 Table 5. Decryption Time Values

 Fig. 7. Comparison on the basis of Decryption Time
Encryption Memory
The amount of main memory required to execute the algorithm with the input amount of data is known as the encryption
memory. The fig. 8 and the table 6 show the encryption, memory consumption of the system. In this diagram the amount
of main memory consumed in KB is shown by Y- axis and the file size, which are used for experiments are reported by
X- axis. According to the obtained results, the proposed system consumes fewer resources as compared to the traditional
encryption technique.

 Table 6. Encryption Memory Values

 Fig. 8. Comparison on the basis of Encryption Memory

Decryption Memory
The amount of main memory required to recover the original file from the ciphertext is known as the decryption memory
consumption. The fig. 9 and table 7 shows the amount of main memory in KB consumed during the data recovery. In
this fig. 9 the X- axis shows the different file size in KB used for decryption and the Y -axis shows main memory

File
Size
(KB)

Proposed
System Time

(ms)

Traditional
System Time

(ms)
10 509 552
50 9 566
100 458 558
500 464 633
1000 31 674
2000 123 862
3000 621 1325

File Size
(KB)

Proposed
System Time

(ms)

Traditional
System Time

(ms)
10 6 507
50 5 537
100 17 552
500 45 676
1000 44 781
2000 63 1062
3000 174 1332

File Size
(KB)

Proposed
System Time

(ms)

Traditional
System Time

(ms)
10 30 33
50 30 36
100 14 23
500 15 27
1000 24 29
2000 21 28
3000 24 36

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404028 6492

consumed during the decryption. According to the obtained results, the amount of main memory used is higher in the
traditional system as compared to the proposed system.

 Table 7. Decryption Memory

 Fig. 9. Comparison on the basis of Decryption Memory

V. CONCLUSION AND FUTURE WORK

 The key objectives and aim of the work are accomplished by providing the secure and trusted environment of cloud
data outsourcing. The proposed concept is adaptable with minimal resource consumption and optimum trust evaluation.
In the near future, the proposed concept is extended for huge data transfer systems. Additionally, that can also be
extended with the structured data trust management.

REFERENCES

1. Ming Li, Shucheng Yu, Yao Zheng, Kui Ren and Wenjing Lou, ‘Scalable and Secure Sharing of Personal Health Records in Cloud
Computing Using Attribute-Based Encryption’, Parallel and Distributed Systems, IEEE Transactions, Vol. 24, Issue 1, pp. 131-143,
2013.

2. Shunan Ma, Jingsha He, and Feng Gao, ‘An Access Control Model based on Multi-factors Trust’, Journal of Networks, Vol. 7, Issue 1,
pp. 173-178, 2012.

3. Ramgovind Sumant, Eloff MM, and Smith E, ‘The Management of Security in Cloud Computing’, Information Security for South Africa
(ISSA), 2010 IEEE, pp. 1-7, 2010.

4. Sheikh Mahbub Habib, Sebastian Ries, and Max Mühlhäuser, "Towards a Trust Management System for Cloud Computing", Trust,
Security and Privacy in Computing and Communications (TrustCom), IEEE 10th International Conference on IEEE, pp. 933-939, 2011.

5. Monoj Kumar Muchahari and Sujeet Kumar Sinha, ‘A New Trust Management Architecture for Cloud Computing Environment’, Cloud
and Services Computing (ISCOS), 2012 International Symposium on. IEEE, pp. 136-140, 2012.

6. Zheng Yan, Peng Zhang, and Athanasios V. Vasilakos, ‘A survey on trust management for Internet of Things’, Journal of network and
computer applications, Vol. 42, pp. 120-134, 2014.

7. Jagpreet Sidhu, and Sarbjeet Singh, ‘Compliance based trustworthiness calculation mechanism in cloud environment’, Procedia
Computer Science, Vol. 37, pp. 439-446, 2014.

8. Rizwana Shaikh, and M. Sasikumar, ‘Trust Model for Measuring Security Strength of Cloud Computing Service’, Procedia Computer
Science, Vol. 45, pp. 380-389, 2015.

9. K. Selvamani, and S. Jayanthi, ‘A Review on Cloud Data Security and its Mitigation Techniques’, Procedia Computer Science, Vol. 48,
pp. 347-352, 2015.

10. AES: The Advanced Encryption Standard URL: https://engineering.purdue.edu/KaK/compsec/NewLectures/Lecture8.pdf.
11. Cryptography in Context. URL: https://www.staff.science.uu.nl/~tel00101/liter/Books/CrypCont.pdf

File size
(KB)

Proposed
System

Memory (KB)

Traditional
System Memory

(KB)
10 31 35
50 32 37
100 20 25
500 19 22

1000 18 33
2000 23 34
3000 16 37

https://engineering.purdue.edu/KaK/compsec/NewLectures/Lecture8.pdf.
https://www.staff.science.uu.nl/~tel00101/liter/Books/CrypCont.pdf

