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ABSTRACT:  Graphics process units (GPUs) originally designed for computer video cards have emerged because the 
most powerful chip in a superior digital computer. Not like multicore CPU architectures, that presently ship with two or 
four cores, GPU architectures are “multicore” with many multiple cores capable of running thousands of threads in 
parallel. NVIDIA’s CUDA could be a co-evolved hardware-software architecture that allows superior computing 
developers to harness the tremendous power of computation and memory bandwidth of GPU in a very familiar 
programming surroundings – the C programming language. We describe the CUDA programming model and inspire its 
use. 
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I. INTRODUCTION 
 
Formally introduced in 2006, CUDA is steady winning in scientific and engineering fields. Many years gone, 

pioneering programmers discovered that GPUs might be harnessed for tasks aside from graphics. However, their 
improvised programming model was clumsy, and also the programmable component shaders on the chips weren’t the 
engines for general purpose computing. NVIDIA’s has seized upon this chance to form a stronger programming model 
and to boost the shaders. In fact, for the superior computing. 

GPU computing, or the utilization of graphics processors for general-purpose computing, began in earnest many 
years ago. Work so far as enclosed a lot of promising analysis in the medical specialty domain. However, this analysis 
at first concerned programming the GPU via a graphics language, that restricted its flexibility and was arcane for non-
graphics consultants. NVIDIA’s CUDA platform changed that, providing a massively multithreaded general purpose 
architecture with up to 128 processor cores and thousands of many billions of floating point operations each second. 
CUDA runs on all current NVIDIA GPUs including the HPC-oriented Tesla product. The ubiquitous nature of those 
GPUs make them a compelling platform for fast high performance computing (HPC) applications. 

II. RELATED WORK 
 
Many researchers have done their work on the implementation of parallel programming for the efficient and 

effective parallel processing on a large data and processes. They propose an OpenGL based implementation that used 
the graphics pipeline. It incorporates a load balancing scheme that helps to scale back the computational cost. 
NVIDIA’s similarly projected a parallel programming approach by using a CUDA programming can achieve a highly 
parallel computation for best performance of an applications. 

Scherl et al. show a CUDA based method with a comparison to a Cell-based method. They claim that their 
methodology to reduces the number of instructions and the usage of registers. In contrast, our acceleration techniques 
focus on reducing the number and amount of off-chip memory accesses and hiding the memory latency with 
computation. Such memory optimisation is very important to enhance the performance of the FDK algorithm, which 
can be classified into a memory-intensive problem.  
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III. CUDA OVERVIEW 
 
Graphics Processing Units (GPUs) are used as for non-graphics computation for several years this can be mentioned 

as General-Purpose Computation on GPUs (GPGPU). The GPU is specialised for compute-intensive, extremely 
parallel computation (exactly what graphics rendering is about) so, extra transistors may be dedicated to process rather 
than data caching and flow management. The GPU is good at a data-parallel processing. The same computation 
executed on several data components in parallel with high arithmetic intensity. Several calculations per access same 
computation suggests that lower demand for sophisticated flow management High arithmetic intensity and plenty of 
data components mean that access latency may be hidden with calculations rather than huge data caches.  

 

 
 

Fig.1.  Basic CPU and GPU architecture 
 
Fig. 1. Shows that the basic architectural difference of both CPU and GPU. Architecturally, the CPU consists of 

simply few cores with a lot of cache memory which will handle some computer code threads at a time. In distinction, a 
GPU consists of many cores will handle thousands of threads at the same time. The power of a GPU with 100+ cores to 
method thousands of threads will accelerate some computer code by 100x over a CPU alone. What’s more, the GPU 
achieves this acceleration whereas being additional power and cost-effective than a CPU.  

 

 
Fig.2. CPU vs GPU Performance 

 
Fig. 2. Shows the Peak performance between CPU and GPU the graph shows us how a NVIDIA’s GPU has more 

peak performance more than a CPU and it always get increased more than the CPU. 
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IV. CUDA ARCHITECTURE 
 
Each thread processor in a GPU can manage 96 concurrent threads, and these processors have their own FPUs, 

registers and shared local memory. 
 

 
 

Fig.3. Language Supported by CUDA Architecture 
 

Fig 3. Show which languages can be supported by the CUDA architecture for GPU computing and makes it possible 
to run a standard C on NVIDIA’s GPU. To make this possible, NVIDIA has defined a general computing instruction 
set (PTX) and small set of C language extensions that allow developers to take advantage of the massively parallel 
processing capabilities in NVIDIA’s GPU. The Portland Group is providing support for FORTRAN on the CUDA 
architecture, and others provide support for JAVA, PYTHON, .NET and other languages. 

 
CUDA includes a C/C++ software development tools to perform a library, and a hardware abstraction mechanism 

that hides the GPU hardware from developers. Though CUDA needs programmers to write down a special code for 
parallel processing, it doesn’t need them to explicitly mange threads in the conventional sense, that greatly simplifies 
the programming model.  

 
CUDA development tolls work alongside a conventional C/C++ compiler, therefore programmers can compile GPU 

code with general-purpose code for the host CPU (Central Processing Unit). For now, CUDA aims at data intensive 
applications that needs single-precision floating point math. Double precision floating point is on NVIDIAs road map 
for a new GPU in close to a future. 

 

 
 

Fig.4. CUDA Architecture. 



            
                   
               ISSN(Online) : 2320-9801 
       ISSN (Print) :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 4, April 2016           
 

Copyright to IJIRCCE                                                              DOI: 10.15680/IJIRCCE.2016. 0404144                                      7079 

 

As shown in fig.4. CUDA Architecture provides a three basic parts which help the programmer to effectively utilise 
the full computational capability of the graphics card on the system. CUDA Architecture splits the device into a grids, 
blocks and threads in a hierarchical structure.  

 
A. The Grid 

 A grid is a cluster of threads all running identical kernel. These threads don’t seem to be a synchronized. Each 
decision to CUDA from CPU is formed through one grid. Beginning a grid on CPU is a synchronous operation 
however, multiple grids will run directly. On Multi-GPU systems, grids cannot be shared between GPUs as a result 
of they use many grids for max potency. 
 

B. The Block 
 Grids are composed of blocks. Every block is a logical unit containing variety of co-ordinating threads, an 
explicit quantity of shared memory. Even as grids don’t seem to be shared between GPUs. Blocks don’t seem to be 
shared between multiprocessors. All blocks in a grid use the same program. A in built variable “blockldx” may be 
wont to establish this block. Block ID’s may be one dimensional or two dimensional. Typically, there are 65,535 
blocks in a GPU. 
 

C. The Thread 
 Blocks are composed of threads. Threads are run on the individual cores of the multiprocessors. However not 
like grids and blocks, they’re not restricted to one core, like blocks, every thread has an ID (threadidx). Thread IDs 
may be one dimensional, two or three dimensional. The thread ID is relative to block it’s in threads have an explicit 
quantity of register memory. Typically, there may be 512 threads per block.  

V. CUDA PROGRAMMING MODEL 
 

A. Thread Blocking 
 

 A kernel is executed as a grid of thread blocks. 
– All threads share the data memory space. 

 A thread block is a batch of threads that can co-operate with one another by: 
– Synchronizing their execution. 

 For hazard free shared memory accesses. 
– Efficiently sharing data through a low latency shared memory. 

 Two threads from two different blocks cannot co-operate. 
 Threads and blocks have IDs. 

– So every thread will decide what data to work on. 
– Block ID can be one dimensional or two dimensional. 
– Thread ID can be one dimensional, two dimensional or three dimensional. 

 
B. CUDA Device Memory Space 

 
 Each thread can: 

 
– Read/Write per thread registers. 
– Read/Write per thread local memory. 
– Read/Write per block shared memory. 
– Read/Write per grid global memory. 
– Read only per grid constant memory. 
– Read only per grid texture memory. 

 
 The host can Read/Write global, constant, and texture memories: 
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– Global memory is the main means of communicating Read/Write data between host and device and 
the contents are visible to all threads. 

– Texture and constant Memories are constants initialized by host and contents visible to all threads. 
 

VI. CUDA MEMORY TYPES 
 

A. REGISTER MEMORY: 
  Data hold within the register memory is only visible to the thread that wrote it and lasts just for the 
lifetime of that thread. In most cases, accessing a register consumes zero clock cycles per instruction. However, 
delays will occur because of read after write dependencies and bank conflicts. The latency of read after write 
dependencies is roughly a 24 clock cycles. For newer CUDA devices that have 32 cores per multiprocessor, it may 
take up to 768 threads to completely hide latency. 
 

B. SHARED MEMORY: 
  Data keep in shared memory is visible to all or any threads inside that block and lasts for the duration 
of the block. This is invaluable as a result of this kind of sort memory permits for threads to communicate and share 
data between one other. 
 

C. CONSTANT MEMORY: 
  Constant memory won’t be used here as a results of their helpful for less than a specific form of 
applications. Constant memory is used for data that may be not change over the course of kernel execution and is 
read only. Using constant instead of global memory will reduce the desired memory bandwidth. However, this 
performance gain will only be realised when a warp of threads read identical location. Similar to constant memory. 
 

D. TEXTURE MEMORY: 
  Texture memory is another sort of read-only memory on the device. Once all reads in a very warp are 
physically adjacent, using texture memory will cut back memory traffic and can increase the performance compared 
to a global memory. 
 

E. GLOBAL MEMORY: 
  Data stored in Global Memory is visible to all or any threads within the application and lasts for the 
duration of the host allocation. It is read and write memory. It is slow and not cached and requires sequential and 
aligned 16 byte reads and writes to be fast 
 
Table. 1. Shows the detail difference between a CUDA memory types as per their locations as on chip or off chip, 
its Size, its latency and what types of access they have. 
 

Memory Location Size Latency Access 

Register On-chip 16384 32-bits registers per SM 0 R/W 

Shared Memory On-Chip 16KB per SM 0 R/W 

Constant On-Chip 64KB 0 R 

Texture On-Chip 1GB >100 cycles R 

Global Off-Chip 1GB >100 cycles R/W 

Table. 1. CUDA memory types 
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VII. EXPERIMENTAL SETUP 
 

The Software Development Kit or the SDK may be a good way to learn a few about a CUDA, anyone will compile 
the examples and can learn how the toolkit works. The SDK is available at the NVIDA’s website and can be 
downloaded by any aspiring programmers who wants to learn about a CUDA programming. Anyone who has some 
basic knowledge about C programming can begin a CUDA programming very quickly. No prior knowledge of graphics 
programming is required to write CUDA codes. CUDA is derived from C with some modifications that enabled it to 
run on GPU. CUDA is a C for GPU. 

 
A. To start developing a CUDA applications do the following steps: 

 
1. Install visual studios as an environment for CUDA programming. 
2. Install specific NVIDIA GPU drivers according to GPU model and also install the CUDA SDK. 
3. Write a program code according to a normal C/C++ programming constructs. 
4. Now, change the written program into the CUDA parallel code by using the library functions 

provided by the SDK. The library functions are used to copy data from host to device, change 
execution from CPU to GPU and Vice versa, copy data from device to host. 
 

B. The Basics of CUDA code implementation as: 
 

1. Allocate CPU memory. 
2. Allocate same amount of GPU memory using library function “CudaMalloc”. 
3. Take data input in CPU memory. 
4. Copy data into GPU memory using library function CudaMemCpy with parameter as 

(CudaMemcpyHostToDevice). 
5. Perform processing in GPU memory using kernel calls. Kernel calls are a way to transfer control 

from CPU to GPU; they also specify the number of grids, blocks and threads i.e. Parallelism is 
required for your program. 

6. Copy final data in CPU memory using library function CudaMemCpy with parameter as 
(CudaMemcpyHostToDevice). 

7. Free the GPU memory or other threads using library function Cudafree. 
 

VIII. ADVANTAGES AND DISADVANTAGES 
 
A. Advantages: 

 
1. The kernel calls in CUDA are written in simple C like languages. So, a programmer’s task is get simpler. 
2. Kernel code has full pointer support. 
3. Supports C++ constructs. 
4. Fairly simple integration API. 
5. Better fully GPU accelerated libraries currently available. 
6. CUDA can be used for a large number of languages. 
7. The programmer has a lot of help available in the form of documentation and sample codes for different 

platforms. 
8. A programmer can use CUDA’s visual profiler, a tool used for performance analysis. 
9. Updates are more regular. 
10. Has been on the market much longer. 

 
B. Disadvantages: 

 
1. Restricted to only a NVIDIA’s GPU. 



            
                   
               ISSN(Online) : 2320-9801 
       ISSN (Print) :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 4, April 2016           
 

Copyright to IJIRCCE                                                              DOI: 10.15680/IJIRCCE.2016. 0404144                                      7082 

 

2. If CUDA accelerated hardware is not present, error is reported and task is aborted. There is no CPU backup 
in this scenario. 
 

3. It is difficult to start programming in CUDA, because it requires setting up of the environment in which 
CUDA enabled programs can run. For example, The NVCC compiler has to be incorporated into build. 

IX. APPLICATIONS 
 
CUDA provides a various benefit for many applications such as: 

 
A. Fast video Transcoding: 

  Transcoding could be a very common, and highly advance and complex procedure that 
simply involves trillions of parallel computations, many of are floating point operations. Applications such 
as FormatFactory have been created which is harness the raw computing power of GPUs in order to 
transcode video much faster than ever before. 
 

B. Video Enhancement: 
 Complicated video enhancement techniques often need an enormous amount of computations. As an 
example, there are lots of algorithm that can upscale a movie by using information from frames 
surrounding the current frame. This involves too many computations for a CPU to handle in a real time. 
 

C. Computational Sciences: 
 In the raw field of computational sciences, CUDA is extremely advantageous. As an example, it is 

currently possible to use CUDA with MATLAB, which may increase computations by an excellent 
quantity. Different common tasks such as computing eigenvalues, or a SVD decompositions, or other 
different matrix mathematics will use CUDA in order to speed up the calculations. 

  
 

D. Fluid Dynamics: 
Fluid dynamics simulations have also been created. These simulations need a large number of calculations, 
and are useful for wing design, and other engineering tasks. 

X. CONCLUSION AND FUTURE WORK 
 
The GPUs are gaining more popularity within the scientific computing community due to their high parallel 

processing capability and easy availability, and are becoming the preferred choice of the programmers due to the 
support offered for programming by models such as CUDA. 

 
The future of parallel computing, is clearly very much in the hands of NVIDA’s CUDA Architecture. So, NVIDIA 

still has a lot of challenges to meet to make a CUDA stick, since whereas technologically it’s undeniably a success, the 
task now is to convince developers that it’s a credible platform and that doesn’t look like it will be easy for NVIDIA. 

 
A. Accelerated rendering of 3D graphics  
B. Accelerated interconversion of Video file formats. 
C. Accelerated encryption, decryption and compression. 
D. Mining cryptocurrencies. 
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