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ABSTRACT: In this paper, a sense-amplifier-based flip-flop (SAFF) suitable for low-power high-speed operation is 

proposed. With the employment of a new sense-amplifier stage as well as a new single-ended latch stage, the power and 

delay of the flip-flop is greatly reduced. A conditional cut-off strategy is applied to the latch to achieve glitch-free and 

contention-free operation. Furthermore, the proposed SAFF can provide low voltage operation by adopting MTCMOS 

optimization. Post-layout simulation results based on a SMIC 55 nm MTCMOS show that the proposed SAFF achieves 

a 41.3% reduction in the CK-to-Q delay and a 36.99% reduction in power (25% input data toggle rate) compared with 

the conventional SAFF. Additionally, the delay and the power are smaller than those of the master-slave flip-flop (MSFF). 

The power-delay-product of the proposed SAFF shows 2.7× and 3.55× improvements compared with the conventional 

SAFF and MSFF, respectively. The area of the proposed flip-flop is 8.12 µm2 (5.8 µm × 1.4 µm), similar to that of the 

conventional SAFF. With the employment of MTCMOS optimization, the proposed SAFF could provide robust 

operation even at supply voltages as low as 0.4 V. 
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I. INTRODUCTION 
 

High speed and low power is the theme of digital circuits. As basic storage elements, the delay and power of the 

flip-flops directly determines the performance and power of digital systems. As described in [1], flip-flops contribute a 

significant portion of the power consumption of the digital system. Moreover, the setup-time and CK-to-Q delay of the 

flip-flop directly affects the maximum clock frequency of the system. Therefore, optimizing the delay and power of 

flip-flops can directly improve the performance and reduce the power consumption of digital systems. 

 

The most commonly used flip-flop in digital systems is the master–slave flip-flop (MSFF). The schematic of the 

C2MOS [2] master-slave flip-flop in the SMIC 55 nm standard cell library provided by the foundry is shown in Figure 1. 

As shown in Figure 1, the data should pass through the first latch before the rising edge of CK, which ensures that the 

flip-flop can capture the correct data at the rising edge of CK. Therefore, the setup time in the MSFF is relatively long. 

At the same time, the CK-to-Q delay involves several logics and is also relatively large 

 

  

Figure 1. Schematic of master–slave flip-flop. 

 

The pulse-triggered flip-flop (PFF) has been considered to be a kind of fast flip-flop. Several PFFs have been proposed 

in previous work [3–6]. PFF is composed of a single latch and a clock pulse generator. The data in the PFF could be 

captured right after the rising edge of CK, and the setup time of the PFF is decreased to near-zero or negative. The main 

trouble with the PFF is the determination of the clock pulse width. A too narrow pulse width cannot guarantee the 

accuracy of the captured data, while a long pulse width will increase the hold time. Since the PFF should be able to work 
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correctly at different temperatures and corners, the longest pulse width should be applied to the PFF, and the hold time of 

PFF is increased. This so-called sizing problem limits the application of the PFF. 

The sense-amplifier-based flip-flop (SAFF), first appearing in [7], is another fast flip-flop with a near-zero or negative 

setup time. The SAFF is composed of a sense-amplifier (SA) stage and a slave latch. The SA stage could capture the 

data right after the rising edge of CK, and the output of the SA stage could be maintained during the positive half cycle 

of CK. Thus, the sizing problem in the PFF is removed. With a near-zero or negative setup time and a reduced hold 

time, the SAFF is a good candidate to substitute MSFF in the standard cell library for high-speed design. Even though 

these features are attractive, the SAFF has several problems. The pre-charge operation of the SAFF will increase power 

consumption, and a fast latch structure is needed to reduce the CK-to-Q delay. Moreover, the low voltage operation 

problem in the conventional SAFF should be resolved to guarantee that the SAFF can be applied to low voltage designs. 

In this paper, a low-power high-speed SAFF is proposed. A new sense-amplifier stage with a smaller pre-charge load is 

applied to reduce the power consumption of the pre-charge operation. A new single-ended latch is employed to achieve 

fast, low-power and glitch-free operation. Furthermore, MTCMOS optimization is employed in the proposed SAFF to 

achieve robust low voltage operations. The rest of this paper is organized as follows. Section 2 gives a brief 

introduction to previous SAFFs. In Section 3, the structure of the proposed SAFF is described in detail. Section 4 shows 

the simulation results and comparisons with previous SAFFs. Finally, Section 5 draws conclusions. 

 

II. OVERVIEW OF EXISTING SAFF ARCHITECTURES 
 

The schematic of the conventional SAFF [8], which is composed of a SA and a NAND2-based set-reset (S-R) latch, is 

shown in Figure 2a. The SAFF operates as follows. The voltage of SN and RN is pre-charged to VDD while the CK is 

low; the output data are maintained by the latch. At the rising edge of CK, the pre-charge transistors MP1 and MP4 are 

turned off and MN5 is turned on. One of the pre-charge nodes (SN and RN) is discharged to 0 while the other remains 

VDD, depending on the input data. Then, the latch captures the new data from the SA stage. The always-on transistor 

MN6 is used to maintain the output of the SA when CK is high. For example, SN is discharged to 0 in response to D = 1 at 

the rising edge of CK, and SN needs to be maintained at 0 during the positive half cycle of CK. D may change to 0 

during the positive half cycle, thus another path to 0 should be provided to SN, and MN6 works at this time. The main 

trouble with the conventional SAFF is the unbalanced 

 

delay of the S-R latch as well as the large power of the pre-charge operation. Moreover, the always-on transistor 

decreases the robustness of the SAFF at low supply voltages. 

 

 
Figure 2. (a) Schematic of the conventional sense-amplifier-based flip-flop (SAFF); (b) Schematic of the latch in 

Nikolic’s SAFF. 

 

Nikolic et al. proposed a latch for the SAFF in [9], which was composed of two inverters and several complex logics to 

eliminate the delay dependence between Q and QN in the conventional SAFF, so as to decrease the delay of the 

SAFF. The schematic of the latch is shown in Figure 2b. The two inverters are applied to get the inversion of SN and 

RN, and the output Q and QN is directly generated by the four signal SN, RN, S and R. The dependence between Q and 

QN is removed and the CK-to-Q delay is decreased. Since the delay of the inverters and complex logic cannot be 

ignored, the optimization of the delay in this way may not meet the expectations. 

 

In [10], Kim et al. proposed a SAFF with a latch composed of two N-C2MOS circuits and two pairs 

of inverters as shown in Figure 3a. Lin et al. improved the latch in [10] to a single-ended structure, which reduced the 

power consumption substantially [11]. The schematic of the latch in Lin’s SAFF is shown in Figure 3b. The delay of 

this kind of SAFF is greatly reduced compared with that of the conventional SAFF since there are few logics between 

SN and the output Q. However, there is a big glitch while the output Q and the next data input are both high, and the 

glitch will increase the power consumption of the SAFF. Furthermore, the current contention of the back-to-back 

inverters will increase power consumption too. In [12], Strollo et al. proposed a SAFF which combined the 
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conventional SAFF and Kim’s SAFF to achieve both fast and glitch-free operation. The schematic of the latch in 

Strollo’s SAFF is shown in Figure 3c. 

        
Figure 3. Schematic of the latches in (a) Kim’s SAFF; (b) Lin’s SAFF; and (c) Strollo’s SAFF. 

 

All these SAFFs above suffer from the low voltage operation problem due to the always-on transistor in the SA stage as 

described in [13]. To address this problem, the SAFF in [13] employs a detection signal to gate the always-on 

transistor, thus overcoming the current contention of previous SAFFs. The schematic of Jeong’s SAFF in [13] is shown in 

Figure 4. The control signal of the always-on transistor in the SA stage is changed to the detection signal. The main 

concern with Jeong’s SAFF is that the transition completion detection logic will increase the propagation delay of the 

FF. 

                                     
Figure 4. Schematic of Jeong’s SAFF. 

 

III. STRUCTURE OF THE PROPOSED SAFF 
 

The schematic of the proposed SAFF is shown in Figure 5. As shown in Figure 5, the SAFF is composed of a SA stage 

and a slave latch, similar to the previous SAFFs. As described in previous sections, the SA stage could capture the data 

right after the rising edge of CK and the slave latch is applied to maintain the output during the negative half cycle of 

CK. 

                                                   
Figure 5. Schematic of the proposed SAFF. 

 

 

 

The SA stage in the conventional SAFF needs to charge all the internal nodes during pre-charge operation, and some of 

the nodes such as n1, n2 and n3 in Figure 2a are discharged to VSS during the data-capturing operation no matter what 

the input data are. Actually, the pre-charge operation of n1, n2 and n3 has no practical effect on the function of the SA 

and is a waste of power. As shown in Figure 6a, the voltages of n1, n2, and n3 are charged close to the power supply 

voltage during pre-charge operation, and the sizes of the transistors MN3 and MN4 are large to decrease the propagation 

delay, so the pre-charge operation of these nodes is a large waste of power consumption. In this paper, the structure of 

the SA is changed; the NMOS controlled by CK (MN5 in Figure 2) is split into two (MN5 and MN6 in Figure 5) and 

moved to connect directly to the back-to-back inverter, as shown in Figure 5. Through the conversion, the nodes 
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related to MN3 and MN4 no longer need to charge during pre-charge operation since the transistors MN5 and MN6 are 

off when CK is low. As shown in Figure 6b, the voltages of n1 and n2 in Figure 5 remain low throughout the operation. 

Thus, the power of the pre-charge operation is greatly reduced. Since pre-charge power is an important part of the 

power consumption of the SAFF, the power consumption of the proposed SAFF can be greatly reduced. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The voltages of the internal nodes in (a) the conventional SAFF’s sense-amplifier (SA) stage; 

(b) the proposed SAFF’s SA stage. 

 

The proposed SA structure can also improve the hold time of the proposed SAFF. The new SA stage can capture the 

input data faster at the rising edge of CK. This is mainly because the internal nodes n1 and n2 remain low during the 

operation, and the discharge time of the internal nodes is reduced. Thus, the hold time of the proposed SAFF is 

reduced. Even though faster data capture increases the setup time of the proposed SAFF, the increase is very small 

because the discharge time of the internal nodes is short. 

A new single-ended latch is applied to the proposed SAFF. The proposed latch combines the advantages of Strollo’s 

latch and Lin’s latch to achieve fast and energy efficient operation. The first stage of the latch shown in Figure 5 is 

similar to that of Strollo’s latch to achieve glitch-free operation. As shown in Figure 7b, the glitch of Lin’s latch shown in 

Figure 7a is perfectly removed. This is mainly due to the insertion of MN9. When D is high, DN is low and the pull 

down path is totally cut off by MN9. Thus, the glitch is removed. The back-to-back inverters used for data storage are 

modified to overcome the current contention. For the output Q’s transition from low to high, which means the voltage 

of SN is low, the feedback inverter is cut off by MN11. Similarly, for the output Q’s transition from high to low, the 

feedback inverter is cut off by MP7. As a result, the effect of the feedback inverter on the output transition is completely 

eliminated. Since the latch has nothing to do with RN, the sizes of the transistors related to RN generation in the SA 

stage could be reduced to reduce power consumption. The 1× inverter INV1 in the latch could provide complementary 

output QN when necessary, and the delay difference between Q and QN is the same as MSFF, an inverter delay. 

 

 
Figure 7. (a) Glitches in Lin’s SAFF; (b) Glitch-free operation of the proposed SAFF. 

 

As described in [13], the always-on transistor leads to function failures at low supply voltages. Even though the 

detection logic in [13] solves the low voltage function failures well, the complex logic increases the delay and power 

consumption. In this paper, MTCMOS optimization is employed to overcome the problem. To avoid suffering low 

voltage function failures, the driving capability of the always-on transistor should be weaker than that of the pull-down 

transistors. When the driving capacity of two stacked LVT-NMOSs and the always-on transistor becomes larger than 
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that of two stacked LVT-NMOSs due to technological variation, the SAFF suffers function failures. When the always-

on transistor is LVT-NMOS, three LVT-NMOSs are stacked. As shown in Figure 8a, the current of three stacked LVT-

NMOSs can be larger than that of two stacked LVT-NMOSs (I1 / I2 < 1) at low supply voltages, and function failures 

occur. When the always-on transistor is changed to HVT-NMOS, which means two LVT-NMOSs and one HVT-NMOS 

are stacked, the function failures no longer occur since the current of two stacked LVT-NMOSs and one HVT-NMOS is 

always smaller than that of two stacked LVT-NMOSs (I1 / I3 > 1 all the time). Furthermore, the current of two stacked 

LVT-NMOSs and the always-on transistor needs to be larger than the leakage current to ensure correct operation. As 

shown in Figure 8c, when the always-on transistor adopts HVT-NMOS, the condition is still satisfied. Therefore, the 

problem of low voltage function failures can be well solved by multi-threshold optimization. In the proposed design, the 

always-on transistor is high-threshold, while others are low-threshold, as shown in Figure 5. 

 

 
Figure 8. Function failure analysis. 

 

Figure 9 shows the transient waveforms of the proposed SAFF. As shown in Figure 9a, the proposed SAFF operates as 

follows: 

 

 
Figure 9. Transient waveforms of the proposed SAFF: (a) CK period = 10 ns, setup time = 5 ns; (b) CK period = 1 ns, 

setup time = 0; (c) CK period = 1 ns, setup violation. 

 

High-to-low transition: The input data D completes high-to-low conversion before the rising edge of CK; at the same time, 

DN achieves low-to-high conversion since it is the inverse of D. SN and RN are pre-charged to high during the negative 

half cycle of CK. At the rising edge of CK, RN is discharged to low through MN2, MN6 and MN4. SN remains high, and 

the output Q is discharged to low through MN8, MN9 and MN11.The feedback inverter is gated by MP7 until QN finishes 

low-to-high conversion (Q finishes high-to-low conversion). The feedback inverter can keep the voltage of Q low due to 

MN10 and MN11 after QN turns to high. 

 

Low-to-high transition: The input data D completes low-to-high conversion before the rising edge of CK, and DN 

finishes high-to-low conversion. SN and RN are pre-charged to high during the negative half cycle of CK. At the rising 

edge of CK, SN is discharged to low through MN1, MN5 and MN3. Then, the output Q is charged to high through MP5; 

since MN10 is cut off by MN11 when SN is low, the operation is also contention-free. The output Q is maintained by MP5 

during the positive half cycle of CK. As for the negative cycle of CK, SN is pre-charged to high and MP5 is off; the 

output Q is maintained by MP6 and MP7 at that time. 

 

The transistor sizes of the proposed SAFF are shown in Table 1. Since the sizes of MN1, MN5 and MN3 directly 

determine the pull-down speed of SN, and the pull-down speed of SN determines the performance of the proposed 

SAFF, the sizes of MN1, MN5 and MN3 are set to be larger. The latch stage in the proposed SAFF is single-ended, so 
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the sizes of MN2, MN6 and MN4 can be smaller to reduce power consumption. Furthermore, reducing the sizes of 

MN2, MN6 and MN4 can balance the pull-down speed of SN and RN since the load of RN is smaller than that of SN. 

The balanced speed leads to a better setup time and hold time for the proposed SAFF. The transistor MN7 is just used 

to provide a path to ground when the data changes during the positive half cycle of CK. MN7 will reduce the voltage 

difference between n1 and n2, affecting the setup time of the SAFF. Therefore, on the premise of ensuring that the 

current of the two stacked NMOSs and MN7 is greater than the leakage current, the smaller the driving capability of 

MN7, the better. The sizes of the transistors in the latch stage are designed to be similar to the sizes in the standard cell 

library except for the feedback inverter, since the feedback inverter is just used to maintain the data of output Q; the 

drive capability of the feedback inverter is not important, so the sizes of the transistors in feedback inverter are set to 

minimum to reduce power consumption. 

 

Table 1. Transistor sizes of the proposed SAFF. 

 

Name W/L (nm) Name W/L (nm) Name W/L (nm) 

MP1 280/60 MN3 560/60 MN9 280/60 

MP2 280/60 MN4 200/60 MN10 120/60 

MP3 280/60 MN5 560/60 MN11 280/60 

MP4 280/60 MN6 200/60 MP5 400/60 

MN1 560/60 MN7 120/80 MP6 120/60 

MN2 200/60 MN8 280/60 MP7 120/60 

 

 
IV. SIMULATION RESULTS AND COMPARISONS 

 
The proposed SAFF has been designed based on SMIC-55 nm technology. In order to verify the validity of the 

proposed SAFF, the MSFF, the conventional SAFF, Nikolic’s SAFF, Lin’s SAFF and Jeong’s SAFF have also been 

designed based on the same technology for comparison. Hspice with the same settings is adopted to perform all post-

layout simulations for comparisons. The performance comparisons such as of the area, power consumption, CK-to-Q 

delay, setup time and hold time of the various flip-flops are described in detail below. 

 

Figure 10 shows the layouts of these flip-flops. The proposed SAFF has the smallest area among the five SAFFs due to 

the simplified single-ended latch. The area of Nikolic’s SAFF and Jeong’s SAFF is quite larger compared to that of the 

conventional SAFF since the slave latches of these two kinds of SAFF are much more complex. The area of the MSFF 

is smaller than that of all kinds of SAFF even though the number of transistors in the MSFF is not the least. This is due to 

the fact that the number of PMOS and NMOS in the MSFF is the same, which leads to the maximum area utilization. The 

area of the proposed SAFF is just 11.5% larger than that of the MSFF, which has the smallest cost of all the SAFFs 

when used to replace the MSFFs in digital systems. 
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Figure 10. Layouts of (a) the master-slave flip-flop (MSFF); (b) the conventional SAFF; (c) Nikolic’s SAFF; (d) Lin’s 

SAFF; (e) Jeong’s SAFF; and (f) the proposed SAFF. 

 

Table 2. Power consumption (µW) of the flip-flops under different input data toggle rates at the speed of 500 MHZ. 

 

Toggle Rate 100% 50% 25% 12.5% 0 * 

MSFF 9.18 6.85 5.7 5.11 4.53 

Conv. SAFF 7.91 6.56 5.92 5.59 5.27 

Nikolic’s 11.52 9.49 8.46 7.93 7.4 

Lin’s 8.52 7.04 6.29 5.92 5.56 

Jeong’s 13.04 11.72 11.06 10.74 10.43 

Proposed 5.67 4.37 3.73 3.41 3.1 

 

*: average power of D = 0 and D = 1. 

 

Table 3 shows the CK-to-Q delay of the flip-flops. The proposed SAFF has the lowest CK-to-Q delay among the flip-

flops across all PVT corners. The main reason is that the signal passes from the SA stage to the output Q with very little 

logic. In addition, the proposed SA stage can capture the input data faster at the rising edge of CK. The delay of the 

conventional SAFF is relatively large due to the dependence of Q and QN in the SR latch. The delay of Nikolic’s 

SAFF and Jeong’s SAFF is slightly larger than that of the conventional SAFF even though the dependence of Q and 

QN in the conventional SAFF is removed. This is mainly because of the increased delay of the complex latches. All 

kinds of SAFF show speed advantages over the MSFF since the MSFF has the longest path from CK to Q compared with 

the SAFFs. The delay of the proposed SAFF is reduced by 56.91% compared with 

  that of the MSFF at the typical corner. Therefore, replacing the MSFF with the proposed SAFF can result in a huge 

speed increase. 

 

Table 3. CK-to-Q delay (ps) of the flip-flops across PVT corners. 

 

Corner ss / 1.08 V / 125 ◦C tt / 1.2 V / 25 ◦C ff / 1.32 V / −40 ◦C 

MSFF 168 94 61 

Conv. SAFF 125 69 44.5 

Nikolic’s 129.5 72 46.5 

Lin’s 76 42.5 27.5 

Jeong’s 130.5 72 45.5 

Proposed 72 40.5 26 
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Table 4. Setup time (ps) of the flip-flops across PVT corners. 

 

Corner ss / 1.08 V / 125 ◦C tt / 1.2 V / 25 ◦C ff / 1.32 V / −40 ◦C 

MSFF 37 19 12 

Conv. SAFF −16 −9 −6 

Nikolic’s −19 −10 −7 

Lin’s −16 −9 −6 

Jeong’s −34 −18 −11 

Proposed −11 −5 −3 

 

The hold time is determined to be the minimum CK to input D delay that guarantees a successful data hold by the flip-flop 

[14]. If the input data must be held past the rising edge of CK, the hold time is positive. If the input data could change 

before the rising edge of CK and the flip-flop can still hold the correct data, the hold time can be negative. As shown in 

Table 5, the hold time of all kinds of SAFF is positive, which is the cost of obtaining a negative setup time. The proposed 

SAFF has a lower hold time than other SAFFs, since the new SA stage can capture the input data faster than the 

previous conventional SA stage. Most previous SAFFs have similar hold times due to the similar structure of the SA 

stage except Jeong’s SAFF. Jeong’s SAFF has the worst hold time due to the turned-off strategy, which is used to improve 

the setup time of the SAFF. The hold time of the SAFFs decreases at the best corner because the SA stage can capture the 

input data faster. On the contrary, the hold time increases at the worst corner. Additionally, the difference in the hold time 

between PVT corners is small and will not have a major impact on circuit performance 

 

 

 

 

 

 

 

                         

 

 

Table 5. Hold  time (ps) of the flip-flops across PVT corners. 

 

The power-delay-product (PDP) is employed as a comprehensive performance index to evaluate each flip-flop. Figure 11 

shows the normalized PDP under different input data toggle rates. Since the delay and power of the proposed SAFF are 

smaller than those of other flip-flops, the PDP of the proposed SAFF is the lowest under each toggle rate. Compared 

with that of the MSFF, the PDP of the proposed SAFF has at least 3× improvement under different input data toggle 

rates, which shows a significant speed and power advantage. 

 

 
Figure 11. Normalized power-delay-product (PDP) under different input data toggle rates. 

 

To evaluate the robustness of the proposed SAFF at low supply voltages, a 500-point Monte Carlo simulation assuming 

die-to-die global variations and within-die random mismatch has been performed. As shown in Figure 12a, the proposed 

SAFF can provide robust operation even at a voltage as low as 0.4 V. As for the conventional SAFF, the conventional 

Corner ss / 1.08 V / 125 ◦C tt / 1.2 V / 25 ◦C ff / 1.32 V / −40 ◦C 

MSFF −10 −7 −4 

Conv. SAFF 19 12 9 

Nikolic’s 25 15 11 

Lin’s 19 12 9 

Jeong’s 42 24 17 

Proposed 15 9 7 



       | DOI: 10.15680/IJIRCCE.2024.1204277 | 

IJIRCCE©2024                                                            |     An ISO 9001:2008 Certified Journal   |                                              4179 

SAFF suffers function failures at a supply voltage of 0.4 V as shown in Figure 12b. Figure 13 shows the CK-to-Q delay 

evaluation of the proposed SAFF as well as that of the MSFF and conventional SAFF as the supply voltage settings vary 

from 0.4 V to 1.2 V. As shown in Figure 13, the proposed SAFF shows delay advantages over the MSFF and conventional 

SAFF at all supply voltages. 

 

 
Figure 12.  Monte Carlo simulation waveform at the voltage of 0.4 V. (a) The proposed design; 

 

C) Conventional SAFF. 

 

 
 

Figure 13. CK-to-Q delay of the proposed flip-flop (FF) as well as that of the MSFF and conventional SAFF at 

different supply voltages ranging from 0.4 V to 1.2 V. 

 

Table 6 summarizes the performance of the various flip-flops. As shown in Table 6, with the proposed SA stage and the 

new glitch-free contention-free single-ended latch, the power of the proposed SAFF has a significant advantage over that of 

the other SAFFs. The leakage of the proposed SAFF is the smallest amongst all FFs, which is mainly due to the 

simplified single-ended latch. Furthermore, the modified latch also makes the proposed SAFF have the lowest CK-to-Q 

delay of all SAFFs. Even though the setup time of the proposed SAFF is a little larger than that of other SAFFs due to the 

new SA stage, the hold time of the proposed SAFF is improved. The proposed SA stage makes the proposed SAFF 

have the smallest hold time among the SAFFs. The area of the proposed SAFF is similar to that of the conventional 

SAFF, indicating that the proposed SAFF does not increase the area overhead when it obtains the above improvements. 

The clock loading of the proposed SAFF is similar to that of other SAFFs. This is because when splitting the CK-

controlled transistor, the transistor size can be reduced, and the clock loading will not increase significantly. Compared 

with those of the MSFF, the setup time, CK-to-Q delay and power consumption of the proposed SAFF are greatly 

improved at the cost of a small increase in the area and hold time. The power-delay-product of the proposed SAFF is 

much smaller than that of the other flip-flops, indicating that the proposed SAFF can provide high-speed and low-power 

operation. 
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MSFF Conv. SAFF  Lin’s Jeong’s Proposed 

Tsetup / ps 19 −9 −10 −9 −18 −5 

Thold / ps −7 12 15 12 24 9 
TCK-Q / ps 

94 (1.36×) 69 (1×) 72 (1.04×) 42.5 (0.62×) 72 (1.04×) 40.5 (0.59×) 

TD-Q / ps           
113 (1.88×)

 
60 (1×) 62 (1.03×) 33.5 (0.56×) 54 (0.9×) 35.5 (0.59×) 

Power (100% **)    
9.18 (1.16×)

 
7.91 (1×) 11.52 (1.46×) 8.52 (1.08×) 13.04 (1.65×) 5.67 (0.72×) 

Power (25% **) / 
5.7 (0.96×)

 
5.92 (1×) 8.46 (1.43×) 6.29 (1.06×) 11.06 (1.87×) 3.73 (0.63×) 

Power (0 **) / 
4.53 (0.86×)

 
27 (1×) 7.4 (1.4×) 5.56 (1.06×) 10.43 (1.98×) 3.1 (0.59×) 

leakage / nW 2.8 (0.93×) 3 (1×) 4.34 (1.45×) 2.87 (0.96×) 4.2 (1.4×) 2.59 (0.86×) 
Area / µm2 

7.28 (0.87×) 8.4 (1×) 10.36 (1.23×) 8.4 (1×) 10.92 (1.3×) 8.12 (0.97×) 

Load of CK / fF 0.38 (0.22×) 1.71 (1×) 1.75 (1.02×) 2.16 (1.26×) 1.71 (1×) 1.77 (1.04×) 

PDP *** (Norm.) 535.8 (1.31×) 408.48 (1×) 609.12 (1.49×) 267.33 (0.65×) 796.32 (1.95×) 151.07 (0.37×) 

 

 

 

Table 6. Performance summary and comparison of various flip-flops. 

 

*: Tsetup + TCK-Q; **: input data toggle rate; ***: power-delay-product at the input data toggle rate25%. 

 

V. CONCLUSIONS 
 

A low-power high-speed SAFF is proposed in this paper. A new structure for the SA stage is proposed to minimize the 

pre-charge power of the SAFF. Additionally, a glitch-free and contention-free single-ended latch is proposed. With the 

employment of the new SA stage and the single-ended latch, the delay and power of the SAFF are greatly optimized. 

The power-delay-product of the proposed SAFF shows a 2.7× improvement compared with that of the conventional 

SAFF at a 25% input data toggle rate. The improvement is 3.55× when compared with the MSFF, which indicates that 

the proposed SAFF is a good choice for replacing MSFFs in digital systems to provide low-power, high-speed operation. 
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