
         
           
                 ISSN(Online): 2320-9801 
            ISSN (Print) :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 9, September 2015      
  

Copyright to IJIRCCE                                                    DOI: 10.15680/IJIRCCE.2015. 0309130                                                 8975 

 

Efficient Compression Techniques for an In 
Memory Database System 

Hrishikesh Arun Deshpande 
Member of Technical Staff, R&D, NetApp Inc., Bangalore, India 

 
ABSTRACT: Enterprise resource planning applications require rapid response to queries, dynamic scaling and 
massive parallel processing something that traditional disk based databases are unable to satisfy. The advent of battery 
backed up non-volatile main memory and multicore parallel processing architectures together with increasing memory 
sizes and falling hardware costs has made it possible to realize a database that resides completely in the main memory. 
But the size of main memory being comparatively smaller than a hard disk, it’s essential to compress the in memory 
data so as to achieve the desired space saving while at the same time leverage the rapid sequential access provided by 
main memory. This paper gives insights into the various compression techniques that can be used to encode an in 
memory database and the conditions under which a given technique can be advantageous over others.  
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I. INTRODUCTION 
 
Enterprise Resource Planning (ERP) is being increasingly used to collect, store, manage and interpret business data 

in applications such as invoice generation, order tracking, sales forecasts among others. This requires massive parallel 
processing, scalability and faster response times something thattraditional databases are unable to guarantee [1]-[3]. 
Traditional databases are often optimized for disk storage and have higherseek times since queries require that data 
needs to be fetched all the way from the disk storage to the CPU’s registers for processing. On the other hand, if all the 
required data is present in memory, then data access is faster resulting in rapid response to queries. Table 1 below 
demonstrates the average seek times when similar data packets are accessed by the CPU from different memory 
components [3]. 

Table 1. Data access seek time 
 

Data Access Seek Time 
L1 cache reference 0.5ns 
Branch Mispredict 5ns 
L2 cache reference 7ns 
Mutex lock/unlock 25ns 
Main memory reference 100ns 
SSD random read 150us 
Read IMB sequentially from Memory 250us 
Disk Seek 10ms 

 
With the advent of massive parallel processing systems and a non-volatile Random Access Memory (RAM) it has 

become possible to realize an in-memory database (IMDB) where the entire data required for database operations 
resides in the system’s main memory [3]. Such a database is also called a main-memory database (MMDB) [4]. As 
shown in Table 1 above, a data access from the main memory (100ns) is almost 100,000 times faster than a disk access 
(10ms). Accessing the data in memory greatly reduces the seek time during querying and provides a faster, predictable 
response in comparison to traditional disk oriented databases [5].Thus, a main memory resident database provides rapid 
data access resulting in a massive performance improvements.Applications where the response time is critical such as 
those running mobile advertising networks or telecommunication networking equipment often use IMDB’s. IMDB has 
also gained momentum in the data analytics field that requires dynamic on-demand decision making capabilities. Table 
2 summarizes the key factors that facilitate the implementation of an IMDB [3], [5], [6]. 
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Table2. Drivers for IMDB implementation 

 
Sl. 
No 

Driver Description 

1. Non-volatile RAM A non-volatile battery backed up RAM ensures that the critical database information is not lost in 
case of power outages. 

2. Maim Memory Capacity The ever increasing capacity of main memory makes it possible to store the entire database in 
memory. Current server boards support up to 12TB of RAM sizes. 

3. Multi-Core Architectures Current systems allow up to 8-16 cores per chip. This promotes massive parallel processing and 
ensures rapid response to queries. 

4. Network Speed With the arrival of faster Ethernet and Infiniband connectivity, it’s possible to ensure faster 
communication in distributed server architecture for an in-memory database. 

5. Declining Costs The hardware costs for storage, networking connectivity and CPU’s are rapidly declining. This 
promotes the development of a parallelized in memory database. 

II. RELATED WORK 
 
In [7], block based compression techniques for large statistical row based databases are discussed. The primary one 

among them is the bit compression technique where blocks of strings can be encoded using a stream of bits. Another 
technique discussed is Adaptive Text Substitution (ATS) where a certain recurring pattern of characters is replaced by a 
pointer to the previous occurrence of this pattern.In [8], the authors propose database compression using data mining 
methods. This technique requires only partial decompression for read operations and no decompression for write 
operations. It uses the Apriori algorithm to find rules in the databases and uses these rules to store data thereby 
achieving high compression rates. 

 
In [9], authors discuss various compression techniques for columnar databases. The null suppression technique 

facilitates compression by removing a sequence of NULL or default values and maintaining the information about the 
original positions of the deleted patterns in a separate data structure. Dictionary encoding is yet another compression 
technique in [9] where the number of bits required to represent the values of a column and the corresponding attribute 
values in the column are then replaced by bit encoded fixed length values. The run length encoding technique 
mentioned in [9] is about compressing runs of the same value in a column to a singular representation. These runs are 
replaced by triples of value, start position and run length to keep a track of the patterns that were compressed. This 
technique works best when the entries of a column are sorted so that similar valuescan appear together.  

III. IN MEMORY DATABASE ARCHITECTURE 
 
A typical IMDB has the actual database completely resident in its main memory (RAM) [10]. Thus the internal 

optimization algorithms are simpler and execute only a few CPU instructions. Fig. 1 illustrates a simplified architecture 
of a typical IMDB [7]. 
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Fig. 1 IMDB architecture 

 
Applications such as an ERP system forward the query request to an in memory query processor that resolves the 

query and executes it on a memory resident database [11]. In most cases, the database system uses a stored procedure 
which is a subroutine used within the database system to consolidate and centralize logic that was originally used in 
applications. This facilitates fewer data transfers and reduces layer switching between the application and the actual 
database since stored procedures are executed within the database system itself thereby allowing faster responses [12]. 
All operations executed on the IMDB are logged into a redo log file that resides on a persistent storage device typically 
a disk. In case the database system uses a volatile DRAM, then a power outage might cause information loss. In these 
scenarios, the log file that maintains a history of transactions performed is scanned and the required set of transactions 
are executed from a specific checkpoint time. The checkpoint image file maintains regular snapshots of the database 
after certain predefined intervals [13]. Further, all information present in the database is written back to the disk for 
backup, recovery and archival reasons. The working information of the database is present in-memory while that of 
older transactions such as completed shipments, processed orders is archived onto disks. The snapshot file together 
with the disk archival mechanism facilitates a timeless travel of the database and this archived information can be used 
for auditing purposes [14]. 

 
A. Dictionary and Attribute Vector 

Although the capacity of main memory is steadily rising, RAM sizes are still restricted in comparison to disk 
capacities that run into several hundred terabytes of space. Hence, it’s essential to use the RAM space in an efficient 
manner. Thus, rather than storing actual strings in tuples, the attribute column can be split into two different 
components namely a dictionary and an attribute vector (AV)[1]-[3]. The dictionary contains the actual string values 
and their corresponding implicit value identifiers (ID’s). The value ID is an integer which is then stored in an attribute 
vector. Thus the tuple of a database row will now have an integer instead of a string. While accessing a particular field, 
we need to follow a two-step process. First, the integer corresponding to the value ID is accessed and then this value ID 
is used as a hash into the dictionary to access the actual string value. Since value ID’s are integers, they can be bit 
encoded thereby achieving significant savings in space[14]. 

 
For example, if string for an attribute field country is “India”, then rather than storing the string “India” its 

corresponding value ID say 91 can be stored in the tuple. If the string “India” has to be accessed, then we first access 
the value ID 91 and then use this ID to hash into the dictionary to access the string “India”. Fig. 2 below illustrates how 
a column first name has been split into its corresponding dictionary and AV [3], [9],[14]. 
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Fig. 2 Dictionary and AV for first name 

 
Splitting a table column into a dictionary and an attribute vector allows us to store attributes as bit encoded integer 

values. This saves space and helps achieve the desired tuple compression while permitting direct access to the DB. 
Further, the dictionary for a given column can be sorted to allow rapid in memory sequential access thereby greatly 
improving scan performance [13]-[14]. 
 
B. Basic Query Executions on an IMDB 

The division of a column into a dictionary and an AV changes the way in which basic query operations such as 
insert, delete and update can be performed on the tables [14]. For an IMDB, the insert operation will involve an initial 
lookup into the dictionary to check if the required value is already present [15]. If yes, then only the corresponding bit 
encoded value ID is directly stored in the AV. If the given value is not found in the dictionary, then we first need to 
insert the desired value into the dictionary, sort the dictionary and then update the AV accordingly. An update operation 
is performed in a manner similar to an insert operation except that an existing AV needs to be updated [15]. However, 
the steps involving dictionary scan, adding the new entry to the dictionary if not found and resorting the resultant 
dictionary remain the same. An IMDB generally doesn’t perform a physical delete i.e. a delete query does not 
physically delete a tuple from the database. Instead, the given tuple is invalidated by using a flag.  Typical flags include 
a timestamp which indicates the duration for which the given tuple is valid or a simple Boolean value that specifies 
whether a given tuple is valid or not. This operation is called a logical delete [11]. Retaining invalidated tuples allows 
us to perform time travels that can be used for auditing purposes. Moreover, this maintains the history of the DB by 
default thereby facilitating implicit logging and snapshot recording [3], [14].  

IV. ATTRIBUTE VECTOR COMPRESSION 
 
Since the AV values in an IMDB are bit encoded integers, it’s possible to compress the AV further by offsetting the 

fixed length bit encoded data [14]. This means that a particular recurring bit pattern can be replaced by a unique value 
and the corresponding offset at which this replacement took place can be recorded in a bit vector. Thus, if a repeating 
value is replaced by a single instance of the value, a high level of compression can be achieved. There are several 
compression techniques available to encode the AV’s some of which have been described below [1], [2], [3], [14]. 
 
A. Prefix Encoding: 

This technique is generally used if a given column starts with a long sequence of the same value. In such cases, 
there’s one predominant value at the beginning of a column while the remaining values are generally unique or have a 
low redundancy. So the recurring prefix value is then replaced by a single occurrence of the value thereby reducing the 
AV size significantly. This is particularly true if the data is sorted which results in multiple occurrences of the same 
value to occur as a prefix which results in a significant compression of the AV. This is illustrated in Fig. 3 below. 
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Fig. 3 Prefix Encoding 

 
The above example shows the dictionary and AV for the column country in a sorted form. Since there are 

approximately 200 countries, about 8 bits are sufficient to encode this column. If the country code for China which is 
37 is considered a prefix, then for the entire population of China (approx. 1.4 Billion), the country codes for citizens of 
China can be compressed and represented using a single common value. Since prefix encoding doesn’t require any 
additional decompression while accessing the compressed data, it allows direct access to the compressed data [16]-[17]. 

 
B. Run Length Encoding: 

Run length encoding is an extension of prefix encoding and can be applied when there are multiple sequences of 
repeating values anywhere across the column. This technique works by replacing each repeating sequence with a single 
occurrence in the sequence and its start position within the given column AV [14]. This is illustrated in Fig. 4 below. 

Run length encoding can be generally applied for a sorted attribute vector column which results in several identical 
values to appear in a block. These blocks of identical values can then be replaced with a single instance of the value in 
the block. In the example in Fig. 4, the country codes in a country AV are presented in a sorted form. Thus codes 
belonging to each country appear as a block which can be encoded using run length encoding. Also, the start position of 
each block in the original AV is stored in a start position vector. Since there are approximately 200 countries, an 8 bit 
encoded value is sufficient to cover all countries. If we assume the population of China to be 1.4 Billion, then 1.4 
billion country codes in a population table can be replaced by a single value thereby greatly compressing the country 
AV. Since the positions of the compressed sequences are known in advance, the compressed vector need not be 
decompressed during scans thereby promoting direct access to data[9], [18]. 

 
Fig.4 Run Length Encoding 

C. Cluster Encoding: 
In this technique, the given AV is partitioned into a specific number of blocks of fixed size. The typical sizeof a 

block is 1024 values per block. Each such block is called a cluster. In cluster encoding, if a specific cluster contains a 
single value then it is replaced by a single occurrence of this value [14]. A bit vector is used to indicate which clusters 
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were compressed by replacement. The size of the bit vector is equal to the number of clusters so that one bit can be 
used to encode a single cluster. This is illustrated in Fig. 5 below. 

 

Fig. 5 Cluster encoding 

The above illustration is for a city column AV. In this case, the city AV is divided into blocks of size 4 integers. In 
the first cluster, we have a single recurring value of 4 which is thus replaced by a single value i.e. 4. This is indicated 
by an entry 1 in the corresponding bit vector. On the other hand, the third sequence 4333 doesn’t have a single unique 
value and is thus retained in its original form. This is indicated by an entry 0 in the bit vector. Thus the bit vector entry 
is necessary to identify the exact location in the original AV. Hence cluster encoding requires additional computations 
thereby allowing only an indirect access of the original AV [19]. This results in a degradation of access performance.  

 
D. Sparse Encoding: 
     Sparse encoding involves removal of a constantly recurring value in an AV. A bit vector is used to record the 
position at which the given value was removed from the original AV [21]. This is particularly true in case of default or 
NULL values which are generally encoded as integer zero in the AV. Rather than storing millions of NULL values in 
an AV and wasting space, these values can be removed from the AV [21]. The resultant sparse AV will have only non-
default values while the positions of removed values are maintained in the bit vector. Fig. 6 illustrates sparse encoding 
applied to a second nationality column AV in a population table. Since it’s assumed that most people do not have a 
second nationality, this entry is zero in most tuples and can be removed using sparse encoding technique. Accessing a 
value in the compressed AV is indirect since the original position must be recomputed using the bit vector. This might 
have an adverse impact on scan performance [14],[20], [21]. 

 
Fig. 6 Sparse encoding 

E. Indirect Encoding: 
Indirect encoding is similar to the cluster encoding technique in that both techniques split the column AV into a 

specified number of blocks of a fixed size (typically 1024). Each such block is called a cluster. If a cluster has only a 
few unique values, then these values within the cluster can be further encoded using a second level dictionary. This 
requires a new data buffer to store links to the new dictionaries for corresponding clusters and a bit vector to indicate as 
to which particular cluster is using an additional dictionary. An example of indirect encoding applied to a firstname 
column that has been sorted country wise is illustrated in Fig. 7 below [20]-[21]. Since block 1 below has a few distinct 
values, it’s possible to encode block 1 using a dictionary. But in block 2 almost all values are unique so an indirect 
encoding using a dictionary is undesirable since it will create too many dictionary entries thereby greatly affecting the 
scan performance. Thus indirect encoding must be used on a block only if it has a limited number of unique values. 
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Fig. 7 Indirect encoding 

 
V. DICTIONARY COMPRESSION 

 
A typical dictionary in an IMDB generally consists of a value ID and its corresponding value which in most cases is 

a string [3]. These string values can be encoded using a standard encoding technique called delta encoding which is 
illustrated in Fig. 8 below [21]. 

Delta encoding is generally applied for sorted string values such as a dictionary of values representing the names of 
cities all over the world as shown in Fig. 8. Each subsequent string in the dictionary is encoded differentially by 
accounting for consecutive prefix characters that are common between the current string and its predecessor. The 
common characters are not repeated in the new string. Instead an integer value is used to encode the number of 
characters that are common between the prefixes of both the strings [22]. This technique promotes direct access since 
both the number of characters common with the precursor as well the number of characters unique to the current string 
are encoded within the dictionary vector itself. 

If data types other than strings are present in a given dictionary, then all the values in the dictionary should be 
stored as sorted arrays. Once we have a sorted dictionary with a non-string data type, we can apply the same 
compression techniques that we applied for AV’s in case the data type is numeric [23]. In any case, a sorted dictionary 
will allow direct access of data and this greatly increasesthe performance of select query processing. 

 

 
Fig. 8 Delta Encoding 

 
VI. COMPARISON BETWEEN DIFFERENT COMPRESSION TECHNIQUES 

 
Given the myriad number of compression techniques available for effective compression of an IMDB, the choice of 

the right compression technique depends on the kind of the data stored in the database and the relative arrangement of 
data in a column [21]. Since the data in a typical IMDB is generally sorted, any of the above listed compression 
techniques can be used. However, it’s always desirable that the resultant vector post compression should allow direct 
access to data without any additional computations otherwise it can affect the scan performance [21]. Table 3 below 
draws a comparison between different compression techniques that are applied to the dictionaries and AV’s of table 
columns [16] – [23]. 
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Table3. Comparison of different compression types 
Sl.No Compression  

Technique 
Description Data structure 

compressed 
Access 
Type 

1. Prefix encoding A large prefix sequence replaced with a single occurrence of the value in 
the sequence 

Attribute Vector Direct 

2. Run length 
encoding 

Each of the recurring sequences are replacing by a single occurrence of the 
value in the sequence with start positions maintained in a separate vector 

Attribute Vector Direct 

3. Cluster Encoding The AV is split into clusters of size 1024. If all values in the cluster are 
same, then they are replaced by a single occurrence of the value. 

Attribute Vector Indirect 

4. Sparse Vector Repeating values such as NULL or default values represented as zeroes in 
tuples are removed altogether from columns with a bit vector used to note 
these positions. 

Attribute Vector Indirect 

5. Indirect Encoding If only a few entries in an AV are unique, they can be further encoded 
using a second level dictionary. 

Attribute Vector Direct 

6.  Delta Encoding If the data type of values in a dictionary is a string, then they can be 
encoded as a delta prefix of the string w.r.t its precursor 

Dictionary Direct 

7. Sorted Arrays If the data type of values in a dictionary is a non-string, then the dictionary 
is stored as a sorted array for sequential direct scans. 

Dictionary Direct 

 
VII. CONCLUSION 

 
With the advent of massive parallel processing architectures and non-volatile batterybacked up random access 

memory, it has become possible to realize a database that is stored completely in memory. The ever increasing size of 
the main memory together with it’s falling costs further provide the desired impetus for the development of an in 
memory database. Such a database maintains the entire enterprise data in memory while using the disk only for backup 
and archival purposes. Despite the increasing main memory sizes, the overall size of the main memory is still 
considerably smaller in comparison to a hard disk. Thus it’s necessary to compress the in memory database in a way 
that it not only saves space but also provides sequential direct access to the compressed data. This is accomplished by 
splitting the database columns into dictionaries and attribute vectors. Attribute vectors can be further compressed using 
various techniques such as prefix encoding, run length encoding, cluster encoding, sparse encoding and indirect 
encoding. Dictionaries containing string values can be encoded using a technique called delta encoding. The choice of 
the right compression technique depends on the type of data and the relative arrangement of data within columns. If the 
columns are sorted, then based on the data sequences observed, appropriate compression techniques can be applied to 
both attribute vectors and dictionaries while still maintaining direct access to compressed data. A direct access is 
necessary to ensure that scan performance is not adversely impacted by any compression algorithms applied to the 
IMDB. 
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