

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17722

Load Balancing and its Challenges in Cloud
Computing: A Review Paper

Sumit Lal, Prof. Saurabh Sharma

Research Scholar, Dept. of Computer Science & Engg, Gyan Ganga College of Technology, Jabalpur, India

Assistant Professor, Dept. of Computer Science & Engg, Gyan Ganga College of Technology, Jabalpur, India

ABSTRACT: Cloud Computing is a rising computing model. It aims to share data, service transparently over a
network of nodes. Since Cloud computing stores the data and distributed resources in the open environment. So, the
amount of data storage increases quickly. In the cloud storage, load balancing is a key issue. It would consume a lot of
cost to maintain load information, since the system is too huge to timely disperse load. Load balancing is one of the
main challenges in cloud computing which is required to distribute the dynamic workload across multiple nodes to
ensure that no single node is overwhelmed. It helps in optimal utilization of resources and hence in enhancing the
performance of the system. A few existing scheduling algorithms can maintain load balancing and provide better
strategies through efficient job scheduling and resource allocation techniques as well. In order to gain maximum profits
with optimized load balancing algorithms, it is necessary to utilize resources efficiently. In this paper, we surveyed
multiple algorithms for load balancing for Cloud Computing. We discussed the challenges that must be addressed to
provide the most suitable and efficient load balancing algorithms

KEYWORDS: Cloud Computing, Load Balancing, Task Scheduling, Cloud Storage, Replications.

I. INTRODUCTION

Cloud Computing became very popular in the last few years. As part of its services, it provides a flexible and easy way
to keep and retrieve data and files. Especially for making large data sets and files available for the spreading number of
users around the world. Handling such large data sets require several techniques to optimize and streamline operations
and provide satisfactory levels of performance for the users. Therefore, it is important to research some areas in the
Cloud to improve the storage utilization and the download performance for the users. One important issue associated
with this field is dynamic load balancing or task scheduling. Load balancing algorithms were investigated heavily in
various environments; however, with Cloud environments, some additional challenges are present and must be
addressed. In Cloud Computing the main concerns involve efficiently assigning tasks to the Cloud nodes such that the
effort and request processing is done as efficiently as possible [1], while being able to tolerate the various affecting
constraints such as heterogeneity and high communication delays.

Load balancing algorithms are classified as static and dynamic algorithms. Static algorithms are mostly suitable for
homogeneous and stable environments and can produce very good results in these environments. However, they are
usually not flexible and cannot match the dynamic changes to the attributes during the execution time. Dynamic
algorithms are more flexible and take into consideration different types of attributes in the system both prior to and
during run-time [2]. These algorithms can adapt to changes and provide better results in heterogeneous and dynamic
environments. However, as the distribution attributes become more complex and dynamic. As a result some of these
algorithms could become inefficient and cause more overhead than necessary resulting in an overall degradation of the
services performance.

In this paper we present a survey of the current load balancing algorithms developed specifically to suit the Cloud
Computing environments. We provide an overview of these algorithms and discuss their properties. In addition, we
compare these algorithms based on the following properties: the number of attributes taken into consideration, the

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17723

137

137

overall network load, and time series.

The rest of this paper is organized as follows. We discuss the challenges of load balancing in cloud computing in
Section II. Then, In Section III we go over the current literature and discuss the algorithms proposed to solve the load
balancing issues in Cloud Computing. After that, we discuss and compare the relevant approaches in Section IV.
We then conclude the paper and show possible areas of enhancement and our future plan of improving load balancing
algorithms in Section V.

II.CHALLENGES IN CLOUD COMPUTING LOAD BALANCING

Before we could review the current load balancing approaches for Cloud Computing, we need to identify the main issues
and challenges involved and that could affect how the algorithm would perform. Here we discuss the challenges to be
addressed when attempting to propose an optimal solution to the issue of load balancing in Cloud Computing. These
challenges are summarized in the following points.

A. Spatial Distribution of the Cloud Nodes

Some algorithms are designed to be efficient only for an intranet or closely located nodes where communication
delays are negligible. However, it is a challenge to design a load balancing algorithm that can work for spatially
distributed nodes. This is because other factors must be taken into account such as the speed of the network links
among the nodes, thedistance between the client and the task processing nodes, and the distances between the nodes
involved in providing the service. There is a need to develop a way to control load balancing mechanism among all the
spatial distributed nodes while being able to effectively tolerate high delays [3].

B. Storage/ Replication

A full replication algorithm does not take efficient storage utilization into account. This is because the same data will be
stored in all replication nodes. Full replication algorithms impose higher costs since more storage is needed. However,
partial replication algorithms could save parts of the data sets in each node (with a certain level of overlap) based on
each node’s capabilities such as processing power and capacity [4]. This could lead to better utilization, yet it increases
the complexity of the load balancing algorithms as they attempt to take into account the availability of the data set’s
parts across the different Cloud nodes.

C. Algorithm Complexity

Load balancing algorithms are preferred to be less complex in terms of implementation and operations. The higher
implementation complexity would lead to a more complex process which could cause some negative performance
issues. Furthermore, when the algorithms require more information and higher communication for monitoring and
control, delays would cause more problems and the efficiency will drop. Therefore, load balancing algorithms must be
designed in the simplest possible forms [5].

D. Point of Failure

Controlling the load balancing and collecting data about the different nodes must be designed in a way that avoids
having a single point of failure in the algorithm. Some algorithms (centralized algorithms) can provide efficient and
effective mechanisms for solving the load balancing in a certain pattern. However, they have the issue of one controller
for the whole system. In such cases, if the controller fails, then the whole system would fail. Any Load balancing
algorithm must be designed in order to overcome this challenge [6]. Distributed load balancing algorithms seem to
provide a better approach, yet they are much more complex and require more coordination and control to function
correctly.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17724

III. LOAD BALANCING ALGORITHMS REVIEW

In this section we discuss the most known contributions in the literature for load balancing in Cloud Computing. We
classify the load balancing algorithms into two types: static algorithms and dynamic algorithms. We first discuss the
static load-balancing algorithms that have been developed for Cloud Computing. Then, we will discuss the dynamic
load-balancing algorithms.

A. Static Load Balancing Algorithms

Static Load balancing algorithms assign the tasks to the nodes based only on the ability of the node to process new
requests. The process is based solely on prior knowledge of the nodes’ properties and capabilities. These would include
the node’s processing power, memory and storage capacity, and most recent known communication performance.
Although they may include knowledge of the communication prior performance, static algorithms generally do not
consider dynamic changes of these attributes at run-time. In addition, these algorithms cannot adapt to load changes
during run-time.

The proposed algorithm by Kumar [9] is an improvement version of the algorithm presented in [10]. Both algorithms are
using the ants’ behavior to gather information about the cloud nodes to assign the task to a specific node. However, the
algorithm in [10] has the ants synchronization issue and the author in [9] is trying to solve this by adding the
feature ‘suicide’ to the ants. Both algorithms work in the following way, once a request is initiated the ants and
pheromone are initiated and the ants start their forward path from the ‘head’ node. A forward movement means that
the ant is moving from one overloaded node looking for the next node to check if it is

overloaded or not. Moreover, if the ant finds an under loaded node, it will continue its forward path to check the next
node. If the next node is an overloaded node, the ant will use the backward movement to get to the previous node.
The addition in the algorithm proposed in [9] is that the ant will commit suicide once it finds the target node,
which will prevent unnecessary backward movements.

The algorithm proposed in [11] is an addition to the Map Reduce algorithm [12]. Map Reduce is a model which has two
main tasks: It Maps tasks and Reduces tasks results. Moreover, there are three methods in this model. The three
methods are part, comp and group. Map Reduce first executes the part method to initiate the Mapping of tasks. At this
step the request entity is partitioned into parts using the Map tasks. Then, the key of each part is saved into a hash key
table and the comp method does the comparison between the parts. After that, the group method groups the parts of
similar entities using the Reduce tasks. Since several Map tasks can read entities in parallel and process them, this will
cause the Reduce tasks to be overloaded. Therefore, it is proposed in this paper to add one more load balancing level
between the Map task and the Reduce task to decrease the overload on these tasks. The load balancing in the middle
divides only the large tasks into smaller tasks and then the smaller blocks are sent to the Reduce tasks based on their
availability.

Junjie proposed a load balancing algorithm [13] for the private Cloud using virtual machine to physical machine
mapping. The architecture of the algorithm contains a central scheduling controller and a resource monitor. The
scheduling controller does all the work for calculating which resource is able to take the task and then assigning the task
to that specific resource. However, the resource monitor does the job of collecting the details about the resources
availability. The process of mapping tasks goes through four main phases which are: accepting the virtual machine
request, then getting the resources details using the resource monitor. After that, the controller calculates the resources
ability to handle tasks and the resource that gets the highest score is the one receiving the task. Finally, the client will be
able to access the application.

B. Dynamic Load Balancing Algorithms

Dynamic load balancing algorithms take into account the different attributes of the nodes’ capabilities and network
bandwidth. Most of these algorithms rely on a combination of knowledge based on prior gathered information about the

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17725

nodes in the Cloud and run-time properties collected as the selected nodes process the task’s components. These
algorithms assign the tasks and may dynamically reassign them to the nodes based on the attributes gathered and
calculated. Such algorithms require constant monitoring of the nodes and task progress and are usually harder to
implement. However, they are more accurate and could result in more efficient load balancing.

In [14], the goal is to find an algorithm to minimize the data duplication and redundancy. The algorithm proposed
is called INS (Index Name Server) and it integrates de- duplication and access point selection optimization. There are
many parameters involved in the process of calculating the optimum selection point. Some of these parameters are the
Hash code of the block of data to be downloaded, the position of the server that has the target block of data, the
transition quality which is calculated based on the node performance and a weight judgment chart, the maximum
bandwidth of downloading from the target server and the path parameter. Another calculation is used to find out
whether the connection can handle additional nodes or not (busy level). They classified the busy levels into three main
categories B(a), B(b) and B(c). B(a) means that the connection is very busy and cannot handle any additional
connections. B(b) means the connection is not busy and additional connections can be added. However, B(c) means that
the connection is limited and further study needs to be done to know more about the connection. B(b) is also classified
into three categories: B(b1) which means that INS must analyze and establish a backup, B(b2) which means the INS
must send the requests to the backup nodes and B(b3) which is the highest level of efficiency required and it means that
INS must reanalyze and establish new backups.

Ren [15] presented a dynamic load balancing algorithm for cloud computing based on an existing algorithm called WLC
[16] (weighted least connection). The WLC algorithm assigns tasks to the node based on the number of connections that
exist for that node. This is done based on a comparison of the SUM of connections of each node in the Cloud and then
the task is assigned to the node with least number of connections. However, WLC does not take into consideration the
capabilities of each node such as processing speed, storage capacity and bandwidth. The proposed algorithm is called
ESWLC (Exponential Smooth Forecast based on Weighted Least Connection). ESWLC improves WLC by taking into
account the time series and trials. That is ESWLC builds the conclusion of assigning a certain task to a node after
having a number of tasks assigned to that node and getting to know the node capabilities. ESWLC builds the decision
based on the experience of the node’s CPU power, memory, number of connections and the amount of disk space
currently being used. ESWLC then predicts which node is to be selected based on exponential smoothing.

The algorithm proposed in [17] is a dual direction downloading algorithm from FTP servers (DDFTP). The algorithm
presented can be also implemented for Cloud Computing load balancing. DDFTP works by splitting a file of size m into
m/2 partitions. Then, each server node starts processing the task assigned for it based on a certain pattern. For example,
one server will start from block 0 and keeps downloading incrementally while another server starts from block m and
keeps downloading in a decremental order. As a result, both servers will work independently, but will end up
downloading the whole file to the client in the best possible time given the performance and properties of both
servers. Thus, when the two servers download two consecutive blocks, the task is considered as finished and other tasks
can be assigned to the servers. The algorithm reduces the network communication needed between the client and nodes
and therefore reduces the network overhead. Moreover, attributes such as network load, node load, network speed are
automatically taken into consideration, while no run-time monitoring of the nodes is required.

The paper in [18] proposes an algorithm called Load Balancing Min-Min (LBMM). LBMM has a three level load
balancing framework. It uses the Opportunistic Load Balancing algorithm (OLB) [19]. OLB is a static load
balancing algorithm that has the goal of keeping each node in the cloud busy. However, OLB does not consider
the execution time of the node. This might cause the tasks to be processed in a slower manner and will cause some
bottlenecks since requests might be pending waiting for nodes to be free. LBMM improves OLB by adding a three
layered architecture to the algorithm. The first level of the LBMM architecture is the request manager which is
responsible for receiving the task and assigning it to one service manager in the second level of LBMM. When the
service manager receives the request, it divides it into subtasks to speed up processing that request. A service manager
would also assign the subtask to a service node which is responsible for executing the task. The service manager
assigns the tasks to the service node based on different attributes such as the remaining CPU space (node availability),

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17726

remaining memory and the transmission rate.

IV. DISCUSSION AND COMPARISON

In this section we discuss the different algorithms that were discussed in Section III. We also compare these algorithms
based on the challenges discussed in Section II.

As discussed earlier, the different approaches offer specific solutions for load balancing that suit some situations but not
others. The static algorithms are usually very efficient in terms of overhead as they do not need to monitor the resources
during run-time. Therefore, they would work very well in a stable environment where operational properties do not
change over time and loads are generally uniform and constant. The synamic algorithms on the other hand offer a much
better solution that could adjust the load dynamically at run-time based on the observed properties of the resources at
run time. However, this feature leads to high overhead on the system as constant monitoring and control will add more
traffic and may cause more delays. Some newly proposed dynamic load balancing algorithms tries to avoid this
overhead by utilizing novel task distribution models.

Scheduling Scheduling Scheduling
Scheduling Factor Findings Environment

Algorithm Method Parameter

Resource-Aware-
Scheduling
algorithm (RASA) Batch Mode Make Span Grouped task

1. It is used to
reduce makespan

Grid
environment

RSDC
(RELIABLE
SCHEDULING
DISTRIBUTED IN
CLOUD
COMPUTING)

1. It is used to
reduce processing
time.
2. It is efficient for
load balancing.

Cloud

Batch Mode processing time Grouped task

environment

An Optimal Model Batch Mode
Quality of
Service, An array of 1. High QoS Cloud

for Priority based Service request
workflow
instances 2.High throughput environment

Service Scheduling time
Policy for Cloud
Computing

 A Priority based Dependency mode Priority to each An array of job 1. Less finish time Cloud
 Job Scheduling queue queue environment

Algorithm in
Cloud
 Computing

Extended Max-
Min Batch Mode Load balancing,

Grouped
Task 1.It is used for Cloud

 Scheduling Using finish time efficient load environment

Petri Net and
Load balancing.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17727

 Balancing
2. Petrin net is
used

 to remove
 limitation of max-
 min algorithm.

An
Optimistic
Differentiated
Job
Scheduling
System
for
Cloud
Computing

Dependency mode

Quality of service,
Single
Job with 1The Qos Cloud

 Maximum profit
multiple
user

requirements of
the environment

 cloud computing
 user and the
 maximum profits
 of the cloud

 computing
servic
e

provide
r are

 achieved.

Improved Cost-
Based
Algorithm
for
Task
Scheduling Batch mode Cost, Performance

Unscheduled
task
group

1.Measures
bot
h Cloud

resourc
e cost and environment

computation

 performance
 2. Improves the
 computation
 /communication

rati
o

 Performance and Batch mode Performance, Cost, Workflow with 1. The application Cloud
 Cost evaluation of large number of of migrations and environment

Gang Scheduling
in job starvation handling

a Cloud
Computing had a
 System with Job significant effect
 Migrations and on the model.
 Starvation 2. It improves
 Handling performance.

Table I shows a comparison among the reviewed algorithms.

V.CONCLUSION AND FUTURE WORK

In this paper, we surveyed multiple algorithms for load balancing for Cloud Computing. We discussed the challenges
that must be addressed to provide the most suitable and efficient load balancing algorithms. We also discussed the
advantages and disadvantages of these algorithms. Then, we compared the existing algorithms based on the challenges
we discussed. Our research on priority based scheduling algorithm [20] concentrates on efficient load balancing and

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 5, Issue 12, December 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0512077 17728

provides us with the basis to further improve it and reach more efficient load balancing and better resource utilization.
The current design of scheduling algorithm can tolerate high delays, handle heterogeneous resources, efficiently adjust
to dynamic operational conditions, offer efficient task distribution, and provide minimum node idle time. However, it
relies on full replication of the files on multiple sites, which wastes storage resources. Therefore, as our future work,
we are planning to improve scheduling algorithm to make it more suitable for Cloud environments and more efficient
in terms of storage utilization

REFERENCES

[1] Randles, M., D. Lamb and A. Taleb-Bendiab, “A Comparative Study into Distributed Load Balancing Algorithms for Cloud Computing,”
in Proc. IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), Perth, Australia, April
2010.
[2] Rimal, B. Prasad, E. Choi and I. Lumb, "A taxonomy and survey of cloud computing systems." In proc. 5th International Joint
Conference on INC, IMS and IDC, IEEE, 2009.
[3] Buyya R., R. Ranjan and RN. Calheiros, “InterCloud: Utility-oriented federation of cloud computing environments for scaling of
application services,” in proc. 10th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), Busan, South
Korea, 2010.
[4] Foster, I., Y. Zhao, I. Raicu and S. Lu, “Cloud Computing and Grid Computing 360-degree compared,” in proc. Grid Computing
Environments Workshop, pp: 99-106, 2008.
[5] Grosu, D., A.T. Chronopoulos and M. Leung, "Cooperative load balancing in distributed systems," in Concurrency and Computation:
Practice and Experience, Vol. 20, No. 16, pp: 1953-1976, 2008.
[6] Ranjan, R., L. Zhao, X. Wu, A. Liu, A. Quiroz and M. Parashar, "Peer- to-peer cloud provisioning: Service discovery and load-balancing," in
Cloud Computing - Principles, Systems and Applications, pp: 195-217, 2010.
[7] Radojevic, B. and M. Zagar, "Analysis of issues with load balancing algorithms in hosted (cloud) environments." In proc.34th International
Convention on MIPRO, IEEE, 2011.
[8] Sotomayor, B., RS. Montero, IM. Llorente, and I. Foster, "Virtual infrastructure management in private and hybrid clouds," in IEEE Internet
Computing, Vol. 13, No. 5, pp: 14-22, 2009.
[9] Nishant, K. P. Sharma, V. Krishna, C. Gupta, KP. Singh, N. Nitin and R. Rastogi, "Load Balancing of Nodes in Cloud Using Ant Colony
Optimization." In proc. 14th International Conference on Computer Modelling and Simulation (UKSim), IEEE, pp: 3-8, March 2012.
[10] Zhang, Z. and X. Zhang, "A load balancing mechanism based on ant colony and complex network theory in open cloud computing
federation." In proc. 2nd International Conference on. Industrial Mechatronics and Automation (ICIMA), IEEE, Vol. 2, pp:240-243, May 2010.
[11] Kolb, L., A. Thor, and E. Rahm, E, "Load Balancing for MapReduce- based Entity Resolution," in proc. 28th International Conference on
Data Engineering (ICDE), IEEE, pp: 618-629, 2012.
[12] Gunarathne, T., T-L. Wu, J. Qiu and G. Fox, "MapReduce in the Clouds for Science," in proc. 2nd International Conference on Cloud
Computing Technology and Science (CloudCom), IEEE, pp:565-572, November/December 2010.
[13] Ni, J., Y. Huang, Z. Luan, J. Zhang and D. Qian, "Virtual machine mapping policy based on load balancing in private cloud environment," in
proc. International Conference on Cloud and Service Computing (CSC), IEEE, pp: 292-295, December 2011.
[14] , T-Y., W-T. Lee, Y-S. Lin, Y-S. Lin, H-L. Chan and J-S. Huang, "Dynamic load balancing mechanism based on cloud storage" in
proc.Computing, Communications and Applications Conference (ComComAp), IEEE, pp:102-106, January 2012.
[15] Ren, X., R. Lin and H. Zou, "A dynamic load balancing strategy for cloud computing platform based on exponential smoothing forecast" in
proc. International Conference on. Cloud Computing and Intelligent Systems (CCIS), IEEE, pp: 220-224, September 2011.
[16] Lee, R. and B. Jeng, "Load-balancing tactics in cloud," in proc. International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), IEEE, pp:447-454, October 2011.
[17] Al-Jaroodi, J. and N. Mohamed. "DDFTP: Dual-Direction FTP," in proc. 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), IEEE, pp:504-503, May 2011.
[18] Wang, S-C., K-Q. Yan, W-P. Liao and S-S. Wang, "Towards a load balancing in a three-level cloud computing network," in proc. 3rd
International Conference on. Computer Science and Information Technology (ICCSIT), IEEE, Vol. 1, pp:108-113, July 2010.
[19] Sang, A., X. Wang, M. Madihian and RD. Gitlin, "Coordinated load balancing, handoff/cell-site selection, and scheduling in multi-cell
packet data systems," in Wireless Networks, Vol. 14, No. 1, pp: 103- 120, January 2008.
[20] Mohamed, N. and J. Al-Jaroodi, “Delay-tolerant dynamic load balancing,” in proc. 13th International Conference on High Performance
Computing and Communications (HPCC), pp:237-245, September 2011.

http://www.ijircce.com

