

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503047 3964

Progressive Detection of Duplicate Data

Pranali Turankar, Vaishali Zungare, Pooja Thakare

B. E Student, Dept. of CSE. Ballarpur Institute of Tech. Gondwana University, Dist. Chandrapur, Bamni,

Maharashtra, India
B. E Student, Dept. of CSE. Ballarpur Institute of Tech. Gondwana University, Dist. Chandrapur, Bamni,

Maharashtra, India

B. E Student, Dept. of CSE. Ballarpur Institute of Tech. Gondwana University, Dist. Chandrapur, Bamni,

Maharashtra, India

ABSTRACT: Data duplicate detection is the process of identifying multiple representations of same or real world
entities. Nowadays, data duplicate detection methods are needed to process larger datasets in shorter time: maintaining
the quality of the datasets and also the entities duplicated becomes increasingly difficult. This application focus on the
duplicates in hierarchical data’s like XML file. The data can be detected using the detection methods. Here the datasets
are loaded in the applications and the processing, extraction, cleaning, separation and detection are carried out to
remove the duplicated data. Comprehensive experiments show that our progressive algorithms can double the
efficiency over time of traditional duplicate detection and significantly improve upon related work.

KEYWORDS: Duplicate detection, entity resolution, progressiveness, and data cleaning.

I. INTRODUCTION

Data are among the most important assets of a company. But due to data changes and bad data entry, errors

such as duplicate entries might occur, making data cleansing and in particular duplicate detection indispensable. Thus,
the pure size of data renders duplicate detection processes expensive. Many industries and system s depends on the
accurate datasets to carry out operations. Online retailers, for example, offer huge catalogues comprising a constantly
growing set of items from many different suppliers. As independent persons change the product portfolio, duplicates
arise. Although there is an obvious need for reduplication, online shops without downtime cannot afford traditional
reduplication.

Progressive duplicate detection identifies most duplicate data in the detection process. Instead of reducing the
overall time that is needed to finish the entire process, progressive approaches try to reduce the average time after
which a duplicate is found. In this work

Here, we have two methods to improve the efficiency and finding duplicates data. Initially we use the method
progressive sorted neighborhood method (PSNM). It uses the progressive duplicate detection algorithms. In this we sort
the input data using predefined sorting key and only compare the records in sorted order. The second method is
progressive blocking (PB). It process large and very dirty datasets. It mainly satisfies the two conditions; first one is
improved early quality next is same eventual quality. So, both exchange the efficiency of duplicate detection even on
very large datasets.

Improved early quality:Let t be an arbitrary target time at which results are needed. Then the progressive algorithm
discovers more duplicate pairs at t than the corresponding traditional algorithm. Typically, t is smaller than the overall
runtime of the traditional algorithm.

Same eventual quality: If both a traditional algorithm and its progressive version finish execution, without early
termination at t, they produce the same results.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503047 3965

II. RELATED WORKS

Databases play an important role in today’s IT-based economy. Many industries and systems depend on the

accuracy of databases to carry out operations. Therefore, the quality of the information (or the lack thereof) stored in
the databases can have significant cost implications to a system that relies on information to function and conduct
business. Much research on duplicate detection, also known as entity resolution and by many other names focuses on
pair selection algorithms that try to maximize recall on the one hand and efficiency on the other hand. Adaptive
techniques are capable of estimating the quality of comparison candidates. The algorithms use this information to
choose the comparison candidates more carefully. In the last few years, the economic need for progressive algorithms
also initiated some concrete studies in this domain. For instance, pay-as-you-go algorithms for information integration
on large scale datasets have been presented. Other works introduced progressive data cleansing algorithms for the
analysis of sensor data streams. However, these approaches cannot be applied to duplicate detection.

Non identical duplicates entries in database records detected by using this technique. Paper work on both

approaches for duplicate records detection first is progressive sorted neighbourhood method which is used this
intuition to iteratively vary the window size, starting with small window of size two that quickly find the most
promising records. And second is progressive blocking algorithms assign each records to a fixed group of similar
records (the block) and then compare all pairs of records within these groups. We introduces a concurrent progressive
approaches for the multi-pass method and adapt an incremental transitive closer algorithm that together form the first
complete the progressive detection of duplicate data workflow.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503047 3966

Architecture Diagram

III. PROPOSED SYSTEM

In this work, however, we focus on progressive algorithms, which try to report most matches early on,
while possibly slightly increasing their overall runtime. To achieve this, they need to estimate the similarity of all
comparison candidates in order to compare most promising record pairs first. We propose two novel, progressive
duplicate detection algorithms namely progressive sorted neighbourhood method (PSNM), which performs best on
small and almost clean datasets, and progressive blocking (PB), which performs best on large and very dirty
datasets. Both enhance the efficiency of duplicate detection even on very large datasets. We propose two dynamic
progressive duplicate detection algorithms, PSNM and PB, which expose different strengths and outperform current
approaches. We introduce a concurrent progressive approach for the multi-pass method and adapt an incremental
transitive closure algorithm that together forms the first complete progressive duplicate detection workflow. We
define a novel quality measure for progressive duplicate detection to objectively rank the performance of different
approaches. We exhaustively evaluate on several real-world datasets testing our own and previous algorithms.

To overcome the problem of serial duplicate detection this work proposes and efficient and flexible
detection scheme that support both progressive algorithm. The process of progressive algorithm is as follow.
1. Load Dataset: - In this process use a give the input data to the proposed system. Here the dataset is loaded from
company database or inserting from user.
2. Data Separation: - In this process we separate is a large amount of data, i.e. large data cannot be fit into main
memory so it is divided into different parts each part is called as a cluster.
3. Duplicate Detection: - In this process we detect the duplicate records from cluster.

Advantages

Improved early quality. Same eventual quality. Our algorithms PSNM and PB dynamically adjust their
behaviour by automatically choosing optimal parameters, e.g., window sizes, block sizes, and sorting keys,
rendering their manual specification superfluous. In this way, we significantly ease the parameterization complexity
for duplicate detection in general and contribute to the development of more user interactive applications.

QUALITY
MEASURE

DUPLICATE
DETECTION

DELIMETER
SEPERATION

METHOD

DATA
MATRIX

Knowledge
Based

Pattern

Transformed
Data

Target
Data

DATA

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503047 3967

IV. PROPOSED ALGORITHM

PROGRESSIVE SNM
The PSNM algorithm calculates an appropriate partition size pSize, i.e., the maximum number of records that fit in
memory, using the pessimistic sampling function calcPartitionSize(D) in Line 2: If the data is read from a database,
the function can calculate the size of a record from the data types and match this to the available main memory.
Otherwise, it takes a sample of records and estimates the size of a record with the largest values for each field. The
algorithm calculates the number of necessary partitions pNum, while considering a partition overlap of W - 1
records to slide the window across their boundaries. Line 4 defines the order-array, which stores the order of
records with regard to the given key K. By storing only record IDs in this array,we assume that it can be kept in
memory. To hold the actual records of a current partition, PSNM declares the recs-array.

Algorithm 1.Progresive Sorted Neighbourhood
Require: dataset reference D, sorting key K, window size W, enlargement interval size I, number of record N

1: procedure PSNM(D,K,W,I,N)
2: pSizecalcPartationSize(D)
3: pNum [N/(pSize-W+1)]
4: array order size N as Integer
5: array recs size pSize as Record
6: ordersortProgressive(D,K,I,pSize,pNum)
7: for currentI 2 to [W/I] do
8: for current1 to pNum do
9: recs loadPartition(D,currentP)
10: for dist€ range(currentI,I,W) do
11: for i0 to |recs|-dist do
12: pair<recs[i],recs[i+dist]>
13: if campare(pair)then
14: emit(pair)
15: lookAhead(pair)

PROGRESSIVE BLOCKING
In this module, dataset reference D, key attribute K, maximum block range R, block size S and record number N are
given as input. The algorithm accepts five input parameters: The dataset reference D specifies the dataset to be
cleaned and the key attribute or key attribute combination K defines the sorting. The parameter R limits the
maximum block range, which is the maximum rank-distance of two blocks in a block pair, and S specifies the size
of the blocks. Finally, N is the size of the input dataset. At first, PB calculates the number of records per partition
pSize by using a pessimistic sampling function in Line 2. The algorithm also calculates the number of loadable
blocks per partition bPerP, the total number of blocks bNum, and the total number of partitions pNum
Algorithm 2: Progressive Blocking

Require: dataset reference D, key attribute K, maximum block range R, block size S and record number N
1: procedure PB(D,K,R,S,N)
2: pSizecalcPartitionSize(D)
3: bPerP [pSize/S]
4: bNum [N/S]
5: pNum [bNum/bPerP]
6: array order size N as Integer

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503047 3968

7:array blocks size bPerP as <Integer, Record[]>
8:priority queue bPairs as<Integer, Integer, Integer>
9: bPairs {<1, 1, ->,….,<bNum, bNum, ->}
10:ordersortProgressive(D, K, S, bPerP, bPairs)
11: for i 0 to pNum – 1 do
12: pBPsget(bPairs, i.bPerP, (i+1).bPerP)
13: blocks loadBlocks(pBPs, S, order)
14: compare(blocks, pBPs, order)
15: while bPairs is not empty do
16: pBPs {}
17: bestBPstakeBest([bPerP/4], bPairs, R)
18: for bestBP € bestBPs do
19: if bestBP [1]-bestBP[0]<R then
20: pBPspBPs U extend(bestBP)
21: blocks loadBlocks(pBPs, S , order)
22: compare(blocks, pBPs, order)
23: bPairsbPairs U pBPs
24: procedure compare(blocks, pBPs, order)
25: for pBP € pBPs do
26: <dPairs, cNum>comp(pBP, blocks, order)
27: emit(dPairs)
28: pBP[2] |dPairs|/cNum

Fig.. PB in a block comparison matrix.

V. RESULT ANALYSIS

Progressive sorted neighbourhood method used for detecting duplicate records in minimum amount of time

as compare as to incremental algorithm. The main drawback of incremental algorithm is time complexity because it
detecting duplicate records serially.we using progressive algorithm for detecting duplicate records.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503047 3969

VI. CONCLUSION

This paper introduced the progressive sorted neighbourhood method and progressive blocking.Both
algorithm increased the efficiency of duplicate detection for situation with limited execution time,

REFERENCES

1) Thorsten Papenbrock, ArvidHeise, and Felix Naumann, “Progressive Duplicate Detection”, Ieee Transactions on Knowledge and Data

Engineering, Vol. 27, No. 5, May 2015.
2) S.ramya and C. palaninehru ,” A Study of Progressive Techniques for Efficient Duplicate Detection ” International Journal of Advanced

Research in Computer Science and Software Engineering , Volume 5, Issue 11, November 2015.
3) Dr.M.Mayilvaganan, M.Saipriyanka, “Efficient and Effective Duplicate Detection Evaluating Multiple Data using Genetic Algorithm”

International Journal of Innovative Research in Computer and Communication Engineering,Vol. 3, Issue 9, September 2015.
4) www.ijarcsse.com
5) S. E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-as-you-go entity resolution,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp.

1111–1124, May 2012
6) U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg, “Adaptive windows for duplicate detection,” in Proc. IEEE 28th Int. Conf. Data

Eng., 2012, pp. 1073–1083.
7) S.K. Dhurandher, S. Misra, M.S. Obaidat, V. Basal, P. Singh and V. Punia,’An Energy-Efficient OnDemand Routing algorithm for Mobile Ad-

Hoc Networks’, 15 th International conference on Electronics, Circuits and Systems, pp. 958-9618, 2008.
8) DilipKumar S. M. and Vijaya Kumar B. P. ,’Energy-Aware Multicast Routing in MANETs: A Genetic Algorithm Approach’, International

Journal ofComputer Science and Information Security (IJCSIS), Vol. 2,2009.
9) AlGabriMalek,Chunlin LI, Z. Yang, NajiHasan.A.H and X.Zhang ,’ Improved the Energy of Ad hoc On- Demand Distance Vector Routing

Protocol’, International Conference on Future Computer Supported Education, Published by Elsevier, IERI, pp. 355-361,2012.
10) D.Shama and A.kush,’GPS Enabled EEnergy Efficient Routing for Manet’, International Journal of Computer Networks (IJCN),Vol.3, Issue 3,

pp. 159-166,2011.
11) Shilpajain and Sourabhjain ,’Energy Efficient Maximum Lifetime Ad-Hoc Routing (EEMLAR)’, international Journal of Computer Networks

and Wireless Communications, Vol.2, Issue 4, pp. 450-455, 2012.
12) Vadivel, R and V. MuraliBhaskaran,’Energy Efficient with Secured Reliable Routing Protocol (EESRRP) for Mobile Ad-Hoc Networks’,

Procedia Technology 4,pp. 703- 707,2012.

http://www.ijircce.com
http://www.ijarcsse.com

