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ABSTRACT: Feature Reduction of pattern dimensionality using feature extraction and feature selection belongs to the 

data mining. To enhance the robustness of the k-means clustering algorithm and for visualization purpose the 

dimension reduction techniques may be employed.  Randomized Dimensionality reduction is the transformation of 

high-dimensional data into a significant illustration of reduced dimensionality that corresponds to the fundamental 

dimensionality of the data. K-means clustering algorithm often not well for high dimension datasets and error 

dimensionality reduction, hence, to improve the efficiency, the proposed system apply Roughset theory based k-means 

on original data set and obtain a reduced dataset containing possibly uncorrelated variables. In this paper, Roughset 

theory for feature selection and K-means based principal component analysis (PCA) for Feature Extraction, non-linear 

conversion is used for reduce the dimensionality and primary centroid is calculated, then it is applied to K-Means 

clustering algorithm. 
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I. INTRODUCTION 

 

Data Mining refers to the mining or discovery of new information in terms of patterns or rules from vast amounts of 

data. Data mining is a process that takes data as input and outputs knowledge. Applications in various domains such as 

text/web mining and bioinformatics often lead to very high dimensional data. Clustering such high-dimensional data 

sets is a contemporary challenge, due to the curse of dimensionality. A common practice is to project the data onto a 

low-dimensional subspace through unsupervised dimensionality reduction such as Principal Component Analysis 

(PCA) and various manifold learning algorithms before the clustering. 

 

Clustering is ubiquitous in science and engineering with numerous application domains ranging from bioinformatics 

and medicine to the social sciences and the web [1]. Perhaps the most well-known clustering algorithm is the so-called 

“k-means” algorithm or Lloyd’s method [2]. Lloyd’s method is an iterative expectation-maximization type approach 

that attempts to address the following objective: given a set of Euclidean points and a positive integer k corresponding 

to the number of clusters, split the points into k clusters so that the total sum of the squared Euclidean distances of each 

point to its nearest cluster center is minimized. Due to this intuitive objective as well as its effectiveness [3], the 

Lloyd’s method for k-means clustering has become enormously popular in applications [4]. 

 

In recent years, the high dimensionality of modern massive datasets has provided a considerable challenge to the 

design of efficient algorithmic solutions for k-means clustering. First, ultra-high dimensional data force existing 

algorithms for k-means clustering to be computationally inefficient, and second, the existence of many irrelevant 

features may not allow the identification of the relevant underlying structure in the data [5]. Practitioners have 

addressed these obstacles by introducing feature selection and feature extraction techniques. Feature selection selects a 

(small) subset of the actual features of the data, whereas feature extraction constructs a (small) set of artificial features 

based on the original features. Here, we consider a rigorous approach to feature selection and feature extraction for k-

means clustering. Next, we describe the mathematical framework under which we will study such dimensionality 

reduction methods. Principal component analysis (PCA) [9] involves a mathematical procedure that transforms a 

number of possibly correlated variables into a smaller number of uncorrelated variables called principal components. 
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The first principal component accounts for as much of the variability in the data as possible, and each succeeding 

component accounts for as much of the remaining variability as possible. 

 

High-dimensional datasets present many mathematical challenges as well as some opportunities, and are bound to 

give rise to new theoretical developments [6]. One of the problems with high-dimensional datasets is that, in many 

cases, not all the measured variables are “important” for understanding the underlying phenomena of interest. While 

certain computationally expensive novel methods [4] can construct predictive models with high accuracy from high-

dimensional data, it is still of interest in many applications to reduce the dimension of the original data prior to any 

modelling of the data. 

 

II. RELATED WORK 

 

In [2] authors addressed the pulse-code modulation (PCM), with a given ensemble of signals to handle, the quantum 

values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has 

been shown by Panter and Dite that, in the limit as the number of quanta becomes infinite, the asymptotic fractional 

density of quanta per unit voltage should vary as the one-third power of the probability density per unit voltage of 

signal amplitudes. The corresponding result for any finite number of quanta is derived; that is, necessary conditions are 

found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy. The 

optimization criterion used is that the average quantization noise power be a minimum. It is shown that the result 

obtained here goes over into the Panter and Dite result as the number of quanta become large. In [3] authors 

investigated variants of Lloyd's heuristic for clustering high-dimensional data in an attempt to explain its popularity (a 

half century after its introduction) among practitioners, and in order to suggest improvements in its application. The 

authors proposed and justify a cluster ability criterion for data sets. It presents variants of Lloyd's heuristic that quickly 

lead to provably near-optimal clustering solutions when applied to well-clusterable instances. This is the first 

performance guarantee for a variant of Lloyd's heuristic. The provision of a guarantee on output quality does not come 

at the expense of speed: some of our algorithms are candidates for being faster in practice than currently used variants 

of Lloyd's method. In addition, our other algorithms are faster on well-clusterable instances than recently proposed 

approximation algorithms, while maintaining similar guarantees on clustering quality. In [4] authors provided 

participants with five datasets from different application domains and called for classification results using a minimal 

number of features. The competition took place over a period of 13 weeks and attracted 78 research groups. 

Participants were asked to make on-line submissions on the validation and test sets, with performance on the validation 

set being presented immediately to the participant and performance on the test set presented to the participants at the 

workshop. In total 1863 entries were made on the validation sets during the development period and 135 entries on all 

test sets for the final competition. In [5] authors discussed to deal with the problem of clustering data points. Given n 

points in a larger set (for example, R/sup d/) endowed with a distance function (for example, L/sup 2/ distance), we 

would like to partition the data set into k disjoint clusters, each with a "cluster center", so as to minimize the sum over 

all data points of the distance between the point and the center of the cluster containing the point. The problem is 

provably NP-hard in some high dimensional geometric settings, even for k=2. It gives polynomial time approximation 

schemes for this problem in several settings, including the binary cube (0, 1)/sup d/ with Hamming distance, and R/sup 

d/ either with L/sup 1/ distance, or with L/sup 2/ distance, or with the square of L/sup 2/ distance. In all these settings, 

the best previous results were constant factor approximation guarantees. It note that our problem is similar in flavor to 

the k-median problem (and the related facility location problem), which has been considered in graph-theoretic and 

fixed dimensional geometric settings, where it becomes hard when k is part of the input. In [8] Authors consider the 

problem of dividing a set of m points in Euclidean n\Gamma space into k clusters (m; n are variable while k is fixed), 

so as to minimize the sum of distance squared of each point to its "cluster center". This formulation differs in two ways 

from the most frequently considered clustering problems in the literature, namely, here we have k fixed and m;n 

variable and we use the sum of squared distances as our measure; we will argue that our problem is natural in many 

contexts. We consider a relaxation of the discrete problem : find the k\Gamma dimensional subspace V so that the sum 

of distances squared to V (of the m points) is minimized. Its shows: (i) The relaxation can be solved by Singular Value 

Decomposition (SVD) of Linear Algebra. (ii) The solution of the relaxation can be used to get a 2-approximation 

algorithm for the original problem. 
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III. PROPOSED ALGORITHM 

 

A. Pre-processing: 

The unsupervised raw dataset is first partitioned into three groups: (1) a finite set of objects, (2) the set of attributes 

(features, variables) and (3) the domain of attribute. For each groups in the dataset, a decision system is constructed. 

Each decision system is subsequently split into two parts: the training dataset and the testing dataset. Each training 

dataset uses the corresponding input features and fall into two classes: normal (+1) and abnormal (−1). 

 

B. K-means based principal component analysis (PCA)Algorithm: 

K-means Clustering algorithms is a widely used partitioning based technique that attempts to find a user specified 

number of clusters (k), which are represented by their centroids, by minimizing the square error function. The K-means 

algorithm is one of the partitioning based, non-hierarchical clustering methods. Given a set of numeric objects X and an 

integer number k, the K-means algorithm searches for a partition of X into k clusters that minimizes the within groups 

sum of squared errors.  K-means based PCA is the simplest of the true eigenvector-based multivariate analyses. 

Regularly, its operation can be thought of as instructive the internal structure of the data in a way which best explains 

the variance in the data. 

The following steps of the K-means based PCA algorithm are described on algorithm 1: 

 

Algorithm 1: K-means based PCA 

Step 1: Initialization: choose randomly K input data vectors to initialize the clusters. 

Step 2: Similarity Search: for each input vector, find the cluster centre that is nearest, and allocate that input vector 

to the corresponding cluster. 

Step 3: Find the column with maximum covariance and call it as max and sort it in any order. 

Step 4: Average Update: update the cluster centres in each group using the mean (centroid) of the input vectors 

assigned to that cluster 

Step 5: Ending rule: repeat steps 2 to 4 until no more change in the value of the means. 

 

C. Rough-set based Feature Selection: 

The Roughest feature selection as the process of finding a subset of features, from the original set of pattern 

features, optimally according to the defined criterion. Rough sets theory is based on the concept of an upper and a 

lower approximation of a set, the approximation space and models of sets. 

An information system can be represented as, 

S = (U, A, V, f);     (1) 

where U is the universe, a finite set of N objects (x1, x2, …, xN) (a nonempty set), A is a finite set of attributes, V = 

UaAVa (where Va is a domain of the attribute a), f : U × A → V is the total decision function (called the information 

function) such that f(x, a)  Va for every a  A, x  U. B subset of attributes B  Q defines an equivalence relation 

(called an indiscernibility (unnoticeable) relation) on U. 

 

IV. CONCLUSION AND FUTURE WORK 

 

In this paper a dimensionality reduction through Roughset based K-means Clustering algorithm. Using randomized 

dimension reduction of roughest theory, original real-world and synthetic datasets is compact to reduced data set which 

was partitioned in to k clusters in such a way that the amount of the total clustering errors for all clusters was reduced 

as much as possible while inter distances between clusters are maintained to be as large as possible. The proposed 

algorithm is to initialize the clusters which are then applied to k-means algorithm. Developing some new dimensional 

reduction methods like canon pies can be used for high dimensional datasets is suggested as future work. 
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