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ABSTRACT: Automatically generating captions for images has always been an area of research in Artificial 

Intelligence. We propose a model to train the image representation to generate captions for the images using Recurrent 

Neural Networks. Image representations are extracted using highly efficient Deep Residual Network (ResNet-50)[0]. 

We also present an extension to traditional LSTM that improves performance of caption generation. We use the dataset 

Flickr8k and validate the performance using widely accepted metrics such as BLEU, CIDEr, METEOR. 

I. INTRODUCTION 

 

Automatically generating captions for an image is a challenging task, and one of the primary goals of Computer 

Vision. The problem is particularly difficult because it requires correctly recognizing different objects in images and 

how they interact with each other. Another challenge is that an image description generator needs to express these 

interactions in a natural language. Therefore, a different language model is required in addition to extracting features 

from the image. Hence, we need to use a multimodal structure. 

Recently, this problem has been studied by many different authors. Despite the challenging nature of this task, there 

has been considerable work in this field due to improvement in machine learning techniques. Neural networks create a 

model the same way in which a human brain perceives an image and generates a caption for the same. Many well-

known companies, such as Microsoft and Google, have published models recently that attempt to solve this problem. 

The main inspiration for our work comes from advancement in research in neural network models. For many years, 

language modelling was achieved by translating words individually, aligning them and reordering etc., but now this can 

be achieved easily using Recurrent Neural Networks(RNN).  

We use a multimodal neural network structure, using Convolutional Neural Network (CNN) and Recurrent Neural 

Networks(RNN) in this project. Over the last few years, it has been proved that CNN is the state of the art model for 

providing a rich vectorial representation of an input image. Therefore, we use CNN for extracting features from an 

input image and use RNN to create a description of the image in a particular natural language. 

We propose the following solutions: 

 Modifying LSTM to create f-LSTM, where each step in LSTM is provided with information about the image, 

also known as focus. 

 Creating a hybrid model with 2 different variations of LSTM, where one is standard LSTM and the second is 

f-LSTM, and the output from each instance is compared and the best one is selected.  
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Fig1. Generation of sentence from image using the proposed model 

II. RELATED WORK 

 

In this section we highlight the efforts taken by various researchers in the domain of image captioning. A large 

number of other works have shared the similar higher level goal. Earlier papers started with smaller tasks of classifying 

images into a fixed number of classes. A classical approach was to treat it as a retrieval problem where the test image 

would be simply described using annotations that was ranked highest [1],[2],[3]. Certain ranking models use the idea of 

co-embedding the images and texts in the same vector space, thus retrieving text that is close to the image in the vector 

space [1].  

Later works started with holistic scene approach that classifies the overall scene, recognizes and segments the object 

components [4].  

The first approach to use neural networks for caption generation was Kiros et al.[5], who proposed a multimodal Log 

Bilinear model. Further works in this field replaced a feed-forward neural language model with a recurrent one. These 

works have some common key structures, and accordingly, we call those structures simply as dominated model or 

general model. In details, two of major parts, i.e., the CNN and RNN, play core roles in general model respectively. 

Especially, for Flickr 8k dataset, Mao et al.[6] present a multimodal Recurrent Neural Network (m-RNN) model 

which contains a VGG-net CNN and a vanilla RNN. Besides, Vinyals et al.[7] use LSTM instead of other RNNs in 

their model and unlike [4], [5] wisely show the image to RNNs at the beginning, leading to performance improvement. 

Vinyals et al.  

All of these works represent images as a single feature vector from the top layer of a pre-trained convolutional 

network. Karpathy[8] instead proposed to learn a joint embedding space for ranking and generation whose model learns 

to score sentence and image similarity as a function of R-CNN object detections with outputs of a bidirectional RNN. 

Show and Tell[7] presents a generative model that uses a similar architecture but uses Inception-v3 model for CNN and 

vanilla LSTM for the caption generation part. They proposed a system with encoder-decoder to maximize probability 

of the target description sentence given a training image. Show, Attend and Tell[8] introduced an attention based model 

that automatically learns to describe the content of images. They introduce two attention-based image caption 
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generators under a common framework: 1) a “soft” deterministic attention mechanism trainable by standard back-

propagation methods and 2) a “hard” stochastic attention mechanism trainable by maximizing an approximate 

variational lower bound or equivalently by REINFORCE  

Our model is based on similar multimodal architecture.  Other works like Fang et al.[9] propose a model that does 

not make use of the RNN. Instead it uses a visual detector for words that commonly occur and is trained using multiple 

instance learning. The model which has been used for achieving our goal is similar in spirit to the log-bilinear model 

(LBL) (Kiros et al, 2014).  Devlin[10] compares two highly accurate methodologies for generating image descriptions. 

The comparison finds the empirical process of using the penultimate activation layer of CNN as an input to the RNN 

providing better results over the model which uses a pipelined process where a CNN generates a set of candidate words 

which are arranged into coherent sentences by maximum entropy (ME) language models. 

III. PROPOSED MODEL 

 

This paper presents a model which tries to focus on generating high level descriptions of images using a 

convolutional neural network to extract features which will then be provided as an input to a recurrent neural network 

using an improvement to the existing Long Short Term Memory(LSTM) cells. 

 

A. Feature Extraction: 

Convolutional Neural Networks is a variant of artificial neural networks that uses many identical copies of the same 

neuron. This allows the network to have lots of neurons and express computationally large models while keeping the 

number of actual parameters – the values describing how neurons behave – that need to be learned fairly small. In the 

early days, people have to design features manually. This step is called feature engineering. The greatest advantage of 

convolutional neural networks is they can learn appropriate features by themselves automatically. 

    For feature extraction, we use pretrained ResNet-50[11] as provided by Kaiming He. It is common to pre train a 

CNN model on very large dataset(eg. ImageNet, with 1.2 million images) to extract features for the task of interest. 

 

 
Fig. 2 High level representation of a single residual block2 

 

The intuition behind using ResNet-50 for feature extraction came due to their superior performance in ImageNet. The 

feed forward shortcut connection of identity mapping do not add any extra parameter or computational complexity. 

VGGNet is very expensive computationally as it uses 140M parameters whereas in ResNet-50, the parameters used are 

http://www.ijircce.com/
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23M. Originally ResNet included 152 layers but we use 50 as it provides a trade-off between rich features and 

computational complexity. 

 

B. Caption Generation: 

Traditional Neural Networks lack the ability of persistence. Thus they throw away previous information and start 

thinking from scratch again. These shortcomings can be overcome by Recurrent Neural Networks that have loops in 

them, which allows the information to persist. RNNs can be thought of as multiple copies of the same network, each 

network passing messages to the next one.  

    Long Short Term Memory[12] or LSTM in short is a variation of RNN which solves the problem of vanishing 

gradients. They are capable of learning long term dependencies through the use of gates.Vanilla LSTMs use 3 gates, 

namely the forget gate, input gate and the output gate. These gates are usually composed of a sigmoid neural net layer 

and a pointwise multiply operation. 

ft = σ ( Wf . [ht-1 , xt ] + bf )                                               (1) 

it = σ ( Wi . [ht-1 , xt ] + bi)                                                   (2) 

Čt = tanh ( Wc . [ht-1 , xt ] + bc )                   (3) 

Ct = ft * Ct-1 + it * Čt                                                  (4) 

ot = σ ( Wo . [ht-1 , xt ] + bo )                                                                    (5) 

ht = ot * tanh (Ct )                                             (6) 

One problem of LSTM is that each step does not have a reference to the image given in the input. Only the first step 

receives the image information. As a result of the gates, the information about the images passed on after each step 

fades away eventually.We try to improve the original LSTM by adding extra focus to the input image at each step. 

Now, the equations at each  changes at each gates including focus is given as: 

it = σ(Wix xt + Wih ht-1  + Wiqf)                                                               (7) 

ft = σ(Wfxxt + Wfhht−1 + Wfqf)                                                     (8) 

ot = σ(Woxxt  + Wohht−1 + Woqf)                                                             (9) 

ct = ft⊙ ct−1 + it⊙ h(Wcxxt + Wchht−1  + Wcqf)                                    (10) 

ht = ot⊙ ct                                                                                                                                                              (11) 

 

 

Fig 3.Focussed LSTM 
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Our strategy of altering model divides the hidden layer into two parts and these two parts stay uncorrelated until the 

output unit. In forward-propagation process, the normal LSTM receives the previous cell state, whereas the focussed 

LSTM receives the feature matrix as well, and then transmit outputs of RNN unit to yt  with corresponding ratios. We 

adopt fully recurrent network as example to illustrate our method. The corresponding formulae are shown as follows: 

                              h1t = relu(Wx1xt + Wh1h1t−1 + bh1)                                         (12) 

                             h2t = relu(Wx2xt + Wh2h2t−1 + bh2)(from f-LSTM)                 (13) 

                             yt = softmax(r1Wd1h1t + r2Wd2h2t + bd)                                 (14) 

                                                               dy1 = r1 × dy                                                                  (15) 

                                                               dy2 = r2 × dy                                                                 (16) 

 

 

Fig 4. Hybrid LSTM 

 

IV. EXPERIMENTS 

 

Dataset: The Image Captioning dataset we use for our experiments is Flickr8k [0]. The Flickr8k dataset is a famous 

dataset consisting of a total of 8000 images selected from Flickr.com. These 8000 images are divided into three sets, 

namely training (6000), validation (1000) and testing(1000). Each image in Flickr8k dataset is described using 5 

captions which have been collected from humans. 

 

Evaluation Metrics: We use three of the most widely used measures in machine translation and image captioning 

literature namely, BLEU[0], CIDEr[0], METEOR[0]. 

    BLEU is a precision-based metric which measures a score that is a precision of word n-grams between the caption 

generated by our model and the ground truth caption. BLEU is often criticized to favour short sentences The metric has 

some obvious drawbacks, then too it is widely used and so we consider this metric for evaluation. 

    Since, no single metric can be perfect report on METEOR and CIDEr. METEOR score is calculated by taking 

harmonic mean of unigram precision and recall. It gives more importance to word matches than precision. It has three 

levels of matching namely, exact, stemmed and synonym. It is seen that this metric shows higher correlation with 

human judgement. 

  CIDEr stands for Consensus-based Image Description Evaluation. It basically measures „how likely it is that the 

generated caption sounds just like a human‟. It captures consensus based on similarity of novel captions with the ones 

already available i.e human generated captions. 

All scores are computed using the coco-caption code1. 
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Data Preprocessing: We convert all the sentences to lower case and ignore all non-alphanumeric characters in every 

sentence. We also filter words such that we keep only those which appear at least 5 times in the actual training dataset 

captions resulting in a vocabulary consisting of 2537 unique words encompassing all the captions of images in the 

training set. 

V. SIMULATION RESULTS 

 

Several related models have been developed in parallel to this work. We include these in the table below for 

comparison. We improve on some metrics. Compared to these approaches, our model prioritizes simplicity and speed 

at a slight cost in performance. 

 

 
Figure 5. Correct Predictions 

 

 
Figure 6. Partially Correct Predictions 

 

 
Figure 7. Incorrect Predictions 
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Figure 8. Results  

VI. CONCLUSION 

 

In this work, we have proposed an extension of the LSTM model for image caption generation. By adding the 

additional focussed LSTM and creating a hybrid model for caption generation, we show how the model can stay „on 

track‟ rather than drifting away to unrelated yet common phrases. We successfully infer that our model performs better 

than similar models based on BLEU-1, BLEU-2 and METEOR scores. We achieved our aim to find a model which 

provides a reasonable trade-off between speed, complexity and accuracy. 
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