
International Journal of Innovative Research in Computerand Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.488 |

||Volume 8, Issue 6, June 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 2448

HPC Auto Scalable Application Deployment

with Kubernetes

Ganesh Kudale
1
, Shyam Gupta

2

Department of Computer Engineering, Siddhant College of Engineering, Sudumbre, Pune, India
1,2

ABSTRACT: Kubernetesis tool for container lifecycle management which eventually helps for application scalability

and its updates and releases into infrastructure. This is cycle of application evolution. Blue green deployment

strategies for any cloud native application is a release model that gradually transfers user traffic from a previous

version of an app or microservice to a nearly identical new release—both of which are running in production at

enterprise scale.

The old version can be called the blue environment while the new version can be known as the green environment.

Once production traffic is fully transferred from blue to green, blue can standby in case of rollback or pulled from

production and updated to become the template upon which the next update is made.

There are downsides to this continuous deployment model. Not all environments have the same uptime requirements

or the resources to properly perform CI/CD processes like blue green. But many apps evolve to support such

continuous delivery as the enterprises supporting them digitally transform.

KEYWORDS: Kubernetes, Blue Green Deployments in Cloud, Application Cloud Deployments via Kubernetes,

Containerized Application Release Models in Cloud.

I. INTRODUCTION

A Kubernetes provides near zero-downtime release and rollback capabilities with open source technologies with

zero software cost for a large-scale enterprise environment. The fundamental idea behind application lifecycle

management with application release and there rolling updates. Rolling updates are shift traffic between two identical

environments that are running different versions of your application. The blue environment represents the current

application version serving production traffic. In parallel, the green environment is staged running a different version

of your application. After the green environment is ready and tested, production traffic is redirected from blue to

green. An application is developed and deployed to any public/private/hybrid cloud environment, having two separate,

but identical, environments—blue and green—increases availability and reduces risk. In this Quick Start architecture,

the blue environment is the production environment that normally handles live traffic. The CI/CD pipeline

architecture creates a clone (green) of the live Application environment (blue). The pipeline then swaps the URLs

between the two environments. environment in service is awareness about the circumstance. Then it can be easily

adjust to the dynamic service.

A pod is a higher level of abstraction grouping containerized components. Any application which is cloud native

and stateless can be containerized into POD. A pod consists of one or more containers that are guaranteed to be co-

located on the host machine and can share resources. The basic scheduling unit in Kubernetes is a pod.

Each pod in Kubernetes is assigned a unique Pod IP address within the cluster, which allows applications to use

ports without the risk of conflict. Within the pod, all containers can reference each other on localhost, but a container

within one pod has no way of directly addressing another container within another pod; for that, it has to use the Pod

IP Address. An application developer should never use the Pod IP Address though, to reference / invoke a capability

in another pod, as Pod IP addresses are ephemeral - the specific pod that they are referencing may be assigned to

another Pod IP address on restart. Instead, they should use a reference to a Service, which holds a reference to the

target pod at the specific Pod IP Address.

A pod can define a volume, such as a local disk directory or a network disk, and expose it to the containers in the

pod.[26] Pods can be managed manually through the Kubernetes API, or their management can be delegated to a

controller.[23] Such volumes are also the basis for the Kubernetes features of ConfigMaps (to provide access to

configuration through the filesystem visible to the container) and Secrets (to provide access to credentials needed to

access remote resources securely, by providing those credentials on the filesystem visible only to authorized

containers).

Once Application is containerized into pod then creating an deployment and services can be easier with kubernetes

and making those deployment be manageable with automation tools and configuration management can help you to

manage the lifecycle of a container

http://www.ijircce.com/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Kubernetes#Services
https://en.wikipedia.org/wiki/Kubernetes#cite_note-kubernetes-for-developers-26
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Kubernetes#cite_note-do-intro-23

International Journal of Innovative Research in Computerand Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.488 |

||Volume 8, Issue 6, June 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 2449

II. LITERATURE SURVEY

Approach introduced by Google for an application releasesvia kubernetes with easy ways. Understanding how

people use or want to use Kubernetes can help us shape everything from what we build to how we do it. To help us

understand how application developers, application operators, and ecosystem tool developers are using and want to

use Kubernetes, the Application Definition Working Group recently performed a survey. The survey focused on these

types of user roles and the features and sub-projects owned by the Kubernetes organization. That included kubectl,

Dashboard, Minikube, Helm, the Workloads API, etc.

The results are in and the raw data is now available for everyone.

There is too much data to summarize in a single blog post and we hope people will be able to find useful

information by pouring over the data. Here are some of the highlights that caught our attention. Introducing Jenkins

with kubernetes will help to manage open cloud scale application deployments easily.

Jenkins evolved from being a pure Continuous Integration Platform to a Continuous Delivery one, embracing the

new design tendency where not only the build but also the release and the delivery process of the product is

automated. In this scenario Jenkins becomes the orchestrator tool for all the teams/roles involved in the software

lifecycle, thanks to which Development, Quality & Assurance and Operations teams can work closely together. Goal

of this paper is not only to position Jenkins as a hub for CD, but also introduce the challenges that still need to be

solved in order to strengthen Jenkins' tracking capabilities.

III. PROPOSED METHODOLOGY

We should first identify application components which can be cloud native. Containerized all the independent

components of an application and create Pods out of it. Tag an image of each component and attach a version of each

to it. Publish it to the local personal registry.

Attached a development code repository and version registry of an image to automation engines like

Jenkins/Ansible/Chef to it which will be open source and can be generalized to it as per application requirement and

it’s configuration management part.

Switching to microservices an application simplified the components within application and its operations but

increases the interaction complexities within services of an application. In the cloud hundreds to thousands

microservices run together to form an application as a single unit. Like Google, AWS are the infrastructure provision

applications, but they are made up of thousands of microservice together to form a cloud. To maintain the

compatibility and health of an application each microservice must have a valid and stateful response for other

microservice even though it’s adding new features to it. Each microservice of an application raises its version to

higher with backward compatibilities between other microservices. In the cloud, you will always find multiple

versions of a microservice will be running in the cloud.

Create CI/CT/CD cycle or pipelines from the automation tools via multi region cluster of Kubernetes

Fig 1: Kubernetes Deployment API Interfaces

Figure 1 shows the Kubernetes architecture of the proposedapplication deployment strategy for application release

via blue green lifecycle.

http://www.ijircce.com/
https://docs.google.com/spreadsheets/d/12ilRCly2eHKPuicv1P_BD6z__PXAqpiaR-tDYe2eudE/edit?usp=sharing

International Journal of Innovative Research in Computerand Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.488 |

||Volume 8, Issue 6, June 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 2450

IV. RESULT ANALYSIS AND DISCUSSION

A. Results

Fig 2: Kubernetes Deployment Model

 Cost Saving Analysis: In analysis, the author applies the open source tool pipelines for any application after

containerization which saves the application release cost per cloud. A generalized open source cloud independent

pipeline for application release pipeline will help huge enterprise to choose an independent cloud based on the

required platform which they can choose based on cloud costing model from cloud providers

B. System Requirements

Software Requirement

∙ Kubernetes

∙ Any programming platform with automation engines

∙ Docker - Application Containerization

 Hardware Requirement:

∙ Processor: All supported cloud processors

∙ Computation: All processing computational

∙ Storage: Cloud Storage

V. CONCLUSION

Auto scalable deployment with K-ubernetes solves scalability issues and reduces deployment time and time to

Market for any application with Generic open tools pipeline. Rolling updates will be never been easy which is major

part of application lifecycle

REFERENCES

[1] AWS Whitepapers, © 2016, Amazon Web Services Y. G. Jiang and J. J. Wang, “Blue Green Methodologies”, IEEE

Transaction Cloud, Jan/Mar 2016.

[2]LaToza, Thomas (2019) "Deployment" (PDF). Archived from the original (PDF) on 2020-01-14. Retrieved 2020-

01-14..

[3] Fowler, Martin (2010-03-01). "Blue Green Deployment". Archived from the original on 2020-01-10. Retrieved

2020-01-14.

[4] Posta, Christian (2015-08-03). "Blue-green Deployments, A/B Testing, and Canary Releases". Archived from the

original on 2018-03-30. Retrieved 2020-01-14.

[5] Marhubi, Kamal (2015-09-26). "Kubernetes from the ground up: API server". kamalmarhubi.com. Archived from

the original on 2015-10-29. Retrieved 2015-11-02.

http://www.ijircce.com/
https://web.archive.org/web/20200114165727/https:/cs.gmu.edu/~tlatoza/teaching/swe432f19/Lecture-13-Deployment.pdf
https://cs.gmu.edu/~tlatoza/teaching/swe432f19/Lecture-13-Deployment.pdf#page-24
https://web.archive.org/web/20200110052353/https:/martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://web.archive.org/web/20180330100354/https:/blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/
https://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/
https://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/
http://kamalmarhubi.com/blog/2015/09/06/kubernetes-from-the-ground-up-the-api-server/
https://web.archive.org/web/20151029131948/http:/kamalmarhubi.com/blog/2015/09/06/kubernetes-from-the-ground-up-the-api-server/

