

 Volume 10, Issue 6, June 2022

Impact Factor: 8.165

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6030

Load Rebalancing Using Mapreducing Task
for Distributed File Systems in Cloud

S Tamilselvan, Gokul . A, Iswarya . V, Jaya Shree .D, Jeeva .K

Assistant Professor, Department of Computer Applications, K S R College of Engineering, Tiruchengode, India

Department of Computer Application, KSR College of Engineering, Tiruchengode, Tamil Nadu, India

ABSTRACT: Cloud computing is emerging as a new paradigm of large scale distributed computing. Load balancing
is one of the main Challenges in Cloud computing which is required to distribute the dynamic workload evenly across
all the nodes. In the cloud storage, Load balancing is a key issue. The Map reducing task can be performed parallel over
the nodes. The file chunks are not distributed uniformly as possible among the nodes. Emerging distributed systems in
production system strongly depends on a central node for chunk reallocation. It would consume a lot of cost to maintain
load information. Proper load balancing aids in minimizing resource consumption. This concludes that all the existing
techniques mainly focus on reducing overhead, service response time and improving performance etc. various
parameters are also identified, and these are used to compare the existing techniques. This paper proposed for
centralized server is change in to the decentralized server using Map reducing task.

 KEYWORDS : load balancing algorithm, load balancing challenges, cloud computing, distributed computing

I. INTRODUCTION

During the last several decades, dramatic advances in computing power, storage, and networking technology
have allowed the human race to generate, process, and share increasing amounts of information in dramatically new
ways. As new applications of computing technology are developed and introduced, these applications are often used in
ways that their designers never envisioned. New applications, in turn, lead to new demands for even more powerful
computing infrastructure. It is now possible to assemble very large, powerful systems consisting of many small,
inexpensive commodity components because computers have become smaller and less expensive, disk drive capacity
continues to increase, and networks have gotten faster. Such systems tend to be much less costly than a single, faster
machine with comparable capabilities. Software challenges also arise in this environment because writing software that
can take full advantage of the aggregate computing power of many machines is far more difficult than writing software
for a single, faster machine Regardless of the exact definition used, numerous companies and research organizations are
applying cloud-computing concepts to their business or research problems including Google, Amazon, Yahoo, and
numerous universities.

A Cloud computing is emerging as a new paradigm of large scale distributed computing. It has moved

computing and data away from desktop and portable PCs, into large data centre’s [1]. It provides the scalable IT
resources such as applications and services, as well as the infrastructure on which they operate, over the Internet, on
pay-per-use basis to adjust the capacity quickly and easily. It helps to accommodate changes in demand and helps any
organization in avoiding the capital costs of software and hardware [2] [3]. Thus, Cloud Computing is a framework for
enabling a suitable, on-demand network access to a shared pool of computing resources (e.g. networks, servers, storage,
applications, and services).These resources can be provisioned and de-provisioned quickly with minimal management
effort or service provider interaction. This further helps in promoting availability [4]. Due to the exponential growth of
cloud computing, it has been widely adopted by the industry and there is a rapid expansion in data centres.

 Load balancing in computer networks is a technique used to spread workload across multiple network links of

computers [2]. It facilitates networks and resources by providing a maximum throughput with minimum time, thus it
helps to improve performance by optimally using available resources and helps in minimizing latency and response
time. Load balancing is achieved by using multiple resources that is, multiple servers that are able to fulfill a request or
by having multiple paths to a resource. Load balancing helps to achieve a high user satisfaction and resource utilization.
When one or more components of any service fail, load balancing facilitates continuation of the service by

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6031

implementing fair-over, that is, it helps in provisioning and deprovisioning of instances of applications without fail. It
also ensures that every computing resource is distributed efficiently and fairly [5]

Fig.1 Cloud Computing

Consumption of resources and conservation of energy is not always a prime focus of discussion in cloud

computing. However, resource consumption can be kept to minimum with proper load balancing which not only helps
in reducing costs but making enterprise greener. Scalability, one of the very important features of cloud computing, is
also enabled by load balancing. Hence, improving resource utility and the performance of a distributed system in such a
way will reduce the energy consumption and carbon footprints to achieve Green computing [1]. The objective and
motivation of this survey is to provide a analytic survey of existing load balancing techniques in cloud computing. In
this paper, we are interested in studying the load rebalancing problem in distributed file systems specialized for large-
scale, dynamic and data-intensive clouds. (The terms “rebalance” and “balance” are interchangeable in this paper.)
Such a large-scale cloud has hundreds or thousands of nodes (and may reach tens of thousands in the future). Our
objective is to allocate the chunks of files as uniformly as possible among the nodes such that no node manages an
excessive number of chunks. Additionally, we aim to reduce network traffic (movement cost) reduce network traffic (or
movement cost) caused by rebalancing the loads of nodes as much as possible to maximize the network bandwidth
available to normal application.

Applications need information on both when and how to rebalance;

The three load balancing steps are:
1. Evaluate the imbalance;
2. Decide how to balance if needed;
3. Redistribute work to correct the imbalance.

We address the first two requirements and derive complete information on how to perform the third; the

application must be able to redistribute its work units as instructed by our framework (a requirement also imposed by
partitioners. Our load model couples abstract application information with scalable load measurements. We derive
actionable load metrics to evaluate the accuracy of the information. Our load model evaluates the cost of correcting
load imbalance with specific load balancing algorithms. We use it to select the method that most efficiently balances a
particular scenario. We demonstrate this methodology on two large-scale production applications that simulate
molecular dynamics and dislocation dynamics. Overall, we make the following contributions.

Load rebalances in the distributed file system carried out using the map reducing task in cloud which helps in

arranging files in nodes of every chunk i.e. stores the files in related nodes of the chunks. Objective of this project is to
allocate the chunks of files as uniformly as possible among the nodes such that no node manages an excessive number
of chunks and also to reduce network traffic and maximize the network bandwidth available to normal applications.
Using the distributed file system, arranging the file system in a cloud: that is the file chunks are no distributed
uniformly as possible among the nodes because the load is put under workload that is linearly scaled with the system
and to increase the performance of the transformation of the file. This performance of the proposal is implemented to
be used in the clustered environment.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6032

II. SYSTEM OVERVIEW

The load rebalancing problem in distributed file systems specialized for large-scale, dynamic and data-

intensive clouds. Suggest offloading the load rebalancing task to storage nodes by having the storage nodes balance
their loads spontaneously. The storage nodes are structured as a network based on distributed hash tables (DHTs)
discovering a file chunk can simply refer to rapid key lookup in DHTs, given that a unique handle is assigned to each
file. DHTs enable nodes to self-organize and -repair while constantly offering lookup functionality in node dynamism,
simplifying the system provision and management. Present a load rebalancing algorithm for distributing file chunks as
uniformly as possible and minimizing the movement cost as much as possible. Nodes perform their load-balancing
tasks independently without synchronization or global knowledge regarding the system. This project not only takes
advantage of physical network locality in the reallocation of file chunks to reduce the movement
Cost but also exploits capable nodes to improve the overall system performance. Algorithm reduces overhead
introduced to the DHTs as much as possible. Additionally, our load-balancing algorithm exhibits a fast convergence
rate. The Architecture can be shown in figure 2.

A. Storage Node Creation

In cloud server simultaneously create node, serve computing and storage functions; a file is partitioned into a
number of chunks allocated in distinct nodes. In this module, a cloud partitions the file into a large number of disjointed
and fixed-size pieces (or file chunks) and assigns them to different cloud storage nodes (i.e., chunk servers). Each
storage node then calculates the frequency of each unique word by scanning and parsing its local file chunks. User
creates a storage node after successful register our account.

Fig.2 Storage Node Creation

B. Distributed Hash Table

DHTs guarantee that if a node leaves, then its locally hosted chunks are reliably migrated to its successor; if a
node joins, then it allocates the chunks whose IDs immediately precede the joining node from its successor to manage.
Our proposal heavily depends on the node arrival and departure operations to migrate file chunks among nodes.
Interested readers are referred to for the details of the self-management technique in DHTs. While lookups take a
modest delay by visiting n nodes in a typical DHT, the lookup latency can be reduced because discovering the l chunks
of a file can be performed in parallel. Proposal is independent of the DHT protocols. To further reduce the lookup
latency, can adopt state-of-the-art DHTs such as Amazon’s Dynamo in that offer one-hop lookup delay.

Fig.3 Identify Storage Node

Chunk

User
Create Storage

Node

SN1

SN2

SNn

.

.

.

Chunk

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Re-balancing Algorithm

Identify Storage Node

Load

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6033

Fig.4 Distributed Hash Table

Fig.5 Overall Data Flow Diagram

C. Distributed Load Balancing

A large-scale distributed file system is in a load-balanced state if each chunk server hosts no more than A
chunks. In our proposed algorithm, each chunk server node i first estimate whether it is under loaded (light) or
overloaded (heavy) without global knowledge. A node is light if the number of chunks it hosts is smaller than the
threshold. In contrast, a heavy node manages the number of chunks. In the following discussion, if a node i departs and
rejoins as a successor of another node j, then represent node i as node j+ 1, node j’s original successor as node j + 2, the

successor of node j’s original successor as node j + 3, and so on. For each node I∈ V, if node i is light, then it seeks a
heavy node and takes over at most A chunks from the heavy node.

Chunk

User

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Search File

Lookup DHT

Chunk

User
Create Storage

Node

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Re-balancing Algorithm

Identify Storage Node

LoadSearch File

Lookup DHT

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6034

Fig.6 Load Rebalancing Architecture Diagram

D. File Distribution

A DHT node is an overlay on the application level. The logical proximity abstraction derived from the DHT
does not necessarily match the physical proximity information in reality. That means a message traveling between two
neighbors in a DHT overlay may travel a long physical distance through several physical network links. In the load-
balancing algorithm, a light node i may rejoin as a successor of a remote heavy node j. Then, the requested chunks
migrated from j to i need to traverse several physical network links, thus generating considerable network traffic and
consuming significant network resources (i.e., the buffers in the switches on a Communication path for transmitting a
file chunk from a source node to a destination node) and distribute the files for requesting users efficiently and
effectively.

III. PRELIMINARY RESULTS

Some preliminary results on load rebalancing are presented. In the following subsections contains DHT
formulation, File chunks, and then map reducing task.

A. DHT formulation

Distributed hash table is given unique identity of each every file. So files are stored in one hash table. The
hash table performed given results The storage nodes are structured as a network based on distributed hash tables
(DHTs), DHTs enable nodes to self-organize and repair while constantly offering lookup functionality in node
dynamism, simplifying the system provision and management.. For each entity, it provides many web pages. File
chunks size can be taken as example.

B. File Chunks

The distribution of chunks after performing the HDFS loads balancer.

 File chunks =500
 Data nodes =20
 =500/20=25.0

C. Map reducing Task

The map reducing task is separated for all data’s. This result is shown in figure7.all chunks are stored in
goggle apps engine. This paper using map reducing task evaualate the balance and redistribute the balancing nodes are
solving.

DHT

file request

CHUNK

sn2

Data

Owner

Distributed

ReBalancing

Cloud User

sn1

SnN

CHUNK

sn2sn1 snN

CS

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6035

Table 1
Comparison of file chunk size

File Chunks Size Data nodes

250 25

300 30

400 40

450 20

500 20

IV. RESULTS

The entire system is implemented in .Net using eclipse Platform. In computer programming, eclipse is an
integrated development environment comprising a base work phase and an extensible plug in system for customizing
the environment. It is written mostly in java. It can be used to develop application in java, and by means of various
plug-ins other programming languages including Ada, C, C++, COBOL, FORTRAN, Haskell, JavaScript, lasso, Perl
and Erlang.It can also be used to develop packages for the software mathematics. Development environment includes
the eclipse data development tools for java and scala .Eclipse CDT for C/C++ and Eclipse PDT for PHP among others.
The initial codebase originated from IBM VisualAge.The Eclipse software development tool is mean for java
developers. User can extend its abilities by installing plug-ins written for the Eclipse Platform. Such as development
toolkit for other programming languages, other programming languages, and can write contribute their own plug-in
modules. Java contains many JAR file. JAR files help to extract the plain text from the web pages. The result is shown
in fig. 7.

Fig. 7 Chunks Stored in Google AppsEngine

V. CONCLUSION

A load-balancing algorithm to deal with the load rebalancing problem in large-scale, dynamic, and distributed
file systems in clouds has been presented in this project. Proposal strives to balance the loads of nodes and reduce the
demanded movement cost as much as possible, while taking advantage of physical network locality and node
heterogeneity. In the absence of representative real workloads (i.e., the distributions of file chunks in a large-scale
storage system) in the public domain, To have investigated the performance of our proposal and compared it against
competing algorithms through synthesized probabilistic distributions of file chunks. The synthesis workloads stress test
the load-balancing algorithms by creating a few storage nodes that are heavily loaded.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 6, June 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1006187|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6036

Proposal is comparable to the centralized algorithm in the Hadoop HDFS production system and dramatically
outperforms the competing distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic
overhead. Particularly, our load-balancing algorithm exhibits a fast convergence rate. The efficiency and effectiveness
of our design are further validated by analytical models and a real implementation with a small-scale cluster
environment. Consider a DHT with an ordered id space I with size N =|j| and a branching factor B such that log N is
integral. The branching factor is used by each chunk to construct its routing table.

To provide consistency with previous work, reconsider Chord as a tree-based routing DHT. It is
straightforward to show that Chord finger tables are constructed like tree-based routing tables.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Proc. Sixth Symp.
Operating System Design and Implementation (OSDI ’04), pp. 137-150, Dec. 2004.

[2] A.W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at the end of
the early years”, IEEE Transaction Pattern Analysis Machine Intelligence, Antony Rowstron and Peter Druschel,
“Pastry: Scalable, Distributed Object Location and Routing for Large-scale Peer-to-Peer Systems,” in Proc.

Middleware, 2001.
[3] John Byers, Jeffrey Considine, and Michael Mitzenmacher,
[4] “Simple Load Balancing for Distributed Hash Tables,” in Proc. IPTPS, Feb. 2003

[5] David Karger and Matthias Ruhl, “New Algorithms for Load
[6] Balancing in Peer-to-Peer Systems,” Tech. Rep. MIT-LCS-TR-911, MIT LCS, July 2003.
[7] J. Westbrook, “Load balancing for response time,” in EuropeanSymposium on Algorithms, 1995, pp. 355–368.
[8] Micah Adler, Eran Halperin, Richard M. Karp,and Vijay V. Vazirani. A Stochastic Process on the Hypercube with

Applications to Peer-to-Peer Networks. In Proceedings STOC, pages 575–584, 2003.
[9] Tanveer Ahmed, Yogendra Singh, Analytic study of load balancing techniques using tool cloud analyst.

[10] Zenon Chaczko, Venkatesh Mahadevan, Shahrzad Aslanzadeh and Christopher Mcdermid, Availabilty and load
balancing in cloud computing, 2011 InternationalConference on Computer and Software Modeling, IPCSIT
vol.14 (2011) ACSIT Press, Singapore

[11] Giuseppe Valetto, Paul Snyder, Daniel J. Dubois, Elisabetta DiNitto and Nicolo M. Calcavecchia, A self-
organized load balancing algorithm for overlay based decentralized service networks

[12] Nidhi Jain Kansal, Inderveer Chana, Cloud Load balancing techniques: A step towards green computing, IJCSI
International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: Amazon’s Highly Available Key-value Store,” in Proc. 21st ACM Symp.

[14] Hadoop Distributed File System, “Rebalancing Blocks,”
http://developer.yahoo.com/hadoop/tutorial/module2.html#rebalancing.

[15] HDFSFederation,http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/Federation.htm
[16] D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems,” in Proc. 16th

ACM Symp. Parallel Algorithms and Architectures (SPAA’04), June 2004, pp. 36–43.

http://www.ijircce.com/

8.165

