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ABSTRACT: In recent years, the use of remote sensing imagery has gained more popularity among the researchers to 
classify and map vegetation over the large spatial regions. Hyperspectral Image (HSI) and multispectral image play a 
vital role in the field of remote sensing. Remote sensing is used in numerous applications such as map drawing, disaster 
management, delimitation of land parcels, land usage planning, agriculture and studies on hydrology and forest. These 
applications involve the classification of pixels in an image into a number of classes. A wide range of image 
classification techniques is available based on the spectral and spatial information. This paper presented a comparative 
analysis of HSI and multispectral image classification techniques along with the advantages. It highlights the latest 
classification approaches and describes an experimental evaluation of a few major classification algorithms.  
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I. INTRODUCTION 
 
Remote sensing is the process of acquiring information about the earth’s environment using the images acquired by 

the satellite. The advantage of remote sensing is that the environmental data covering a large surface can be captured 
instantaneously and processed for generating map [1].  

The ability for analyzing the information from the remote sensing satellite enables monitoring of the earth’s surface. 
The remote sensing data is used for the mapping of vegetation over the large spatial scales. The remote sensing data is 
available as multispectral image and HSI. In multispectral imaging, the sensors collect image data ranging between 
three to six spectral bands from the visible and near-infrared region. In hyperspectral imaging, the sensors collect 
multiple narrow spectral bands from the visible and infrared regions. These sensors collect around 200 or more spectral 
bands and enable construction of continuous spectral reflectance signature. The HSI data at a finer spectral resolution 
can be used for effective vegetation classification by detecting the structural differences in vegetation areas [2].  

The classification of land cover from the captured image is an emerging research topic in the remote sensing 
applications. Image classification is the process of automatically categorizing the pixels in the remote sensed image 
into individual classes. The main objective of the image classification is to identify the features that represent the land 
cover. The image classification techniques are classified as supervised and unsupervised classifications. In the 
supervised classification, the spectral features of areas from a satellite dataset are used to form a training dataset. In 
unsupervised classification, the group of pixels from the image is automatically clustered based on the spectral features. 
Each cluster is identified as a type of separate land cover. Classification of remote sensed data is a challenging task due 
to the presence of complex landscape and usage of classification methodology. This paper presented a comparative 
analysis of HSI and multispectral image classification techniques. An overview of the HSI and multispectral image 
classification techniques along with the performance analysis is described in this paper. 

The remaining sections of the paper are organized in the following manner: Section II describes the review of the 
HSI and multispectral image classification approaches. Section III presents the comparative analysis of the HSI and 
multispectral image classification approaches. Section IV illustrates the conclusion of the analysis work. 
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II. IMAGE CLASSIFICATION APPROACHES 
 

A.Sparse Logistic Regression (SLR) 
SLR selects a few discriminative input variables from the shared feature space for the approximate prediction of the 

system output [3]. This reduces the distribution shift and increases the classification accuracy.  In the training process, 

the objective function of SLR is minimized as 

min , ∑ log 1 + 푒푥푝 −푦 (푤 푣 + 푐) + 휆‖푤‖        (1) 

Where 푣  represents the feature vector and 푦 ∈ {1,−1} represents the class label of the ith training sample. 

휆indicates the regularization parameter. The computational complexity of each iteration is 풪(푚 푝)[4]. After estimating 

the coefficients ‘w’ and ‘c’, the classifier operates in a probabilistic manner for labeling the input test sample ‘x’ using 

the feature vector 

푃(푦 = 1|푣) =           (2) 

For multiclass problem, the one-vs-one voting scheme can be used. The multitask SLR (MTSLR) is used for the 

simultaneous training of two SLR models with the label samples in the source and target scenes. But, the two SLR 

models share a common discriminative feature subset. The SLR-based classifier trains a single SLR model for both 

scenes, the MTSLR provides strongly related and little differentiated classifier for two different scenes. This reduces 

the impact of residuary distribution shift after adapting the dictionary learning-based feature-level domain. Despite of 

training two SLR models separately, they are bound together by sharing the same sparse structure in coefficient vectors 

defined as 

‖[푤 ,푤 ]‖ , = ∑ (푤 ) + (푤 )          (3) 

The regularization parameter controls the sparsity level in 푤 and 푤 . The MTSLR model completes the selection of 

combined feature and simultaneous training of two classifiers. As the ℓ ,  norm regularization term in the objective 

function cannot be differentiable at certain points, the whole objective function cannot be minimized using the gradient 

descent [5-7].  

 

B. Multiple-Feature-Based Adaptive Sparse Representation (MFASR) 

In the multiple-feature case, a pixel ‘x’ is represented using four features 푥 = {푥 } , , ,  where 푥  is the kth 

feature vector [8]. The four feature dictionaries set 퐷 = {퐷 } , , ,  is created by extracting the pixels from these 

features. For the pixel 푥  of each feature, the sparse coding algorithm is used to obtain the corresponding sparse 

coefficient 훼 . The class label of the test pixel is determined by mutually computing the minimum residual 

푐푙푎푠푠(푥) = arg min ,…, ∑ ‖푥 − 퐷 훼 ‖         (4) 

Where 훼  is the sparse coefficient of the kth feature belonging to cthclass. The sparse coding algorithm cannot use the 

strong correlations among different features. The MFASR method is proposed to use the similarities and variations of 

multiple features. As the test pixels {푥 } , , ,  from different features belong to the same class, multiple feature 

http://www.ijircce.com


         
          
                  ISSN(Online): 2320-9801 
              ISSN (Print):  2320-9798                                                                                                                             

                                                                                                               
International Journal of Innovative Research in Computer  

and Communication Engineering 
(A High Impact Factor, Monthly, Peer Reviewed Journal) 

Website: www.ijircce.com  

   Vol. 5, Issue 10, October 2017  

Copyright to IJIRCCE                                                             DOI: 10.15680/IJIRCCE.2017. 0510019                                         16217      

 

sparse coefficients are controlled to have a same class-level sparsity pattern and can select different atoms within one 

class. Hence, desired sparse coefficients for the test pixels of multiple features will have a same class-level pattern and 

different feature-level pattern.  

Each adaptive set is represented as the indexes of non-zero scalar coefficients that belong to the same class in the 

sparse matrix. The above optimization problem is solved using the adaptive sparse algorithm [9].After obtaining the 

sparse matrix, the combined residual errors are computed to determine the class to which the pixel belongs to. A spatial 

window for each pixel is defined for manipulating the spatial information of the HyperSpectral Image (HSI) features. 

This improves the classification performance. Rather than using a fixed size window, a Shape Adaptive (SA) window 

is chosen for the pixel of each feature. The pixels within the SA window can create a set matrix {푋 } , , , where 

푋 = [푥 ,푥 , … ,푥 ]. The SA sparse matrix 푆 for the set matrix is obtained by 

푆 = arg min ∑ 푋 − 퐷 푆 	푠. 푡	‖푆‖ , ≤ 퐾       (5) 

Where 푆 = [푆 ,푆 ,푆 ,푆 ]. The 푆 = [훼 ,훼 , … ,훼 ] is the coefficient matrix associated with the feature ‘k’.  

 

C.Bayesian logistic regression with Super Gaussians  

The variational methods are applied for approximating the posterior distribution by 푞(푤)[10]. Reduction of the 

Kullback-Leibler (KL) divergence is the variational criterion. This is used to find 푞(푤), 

퐾퐿(푞(푤)‖푝(푤|푦)) = ∫푞(푤) log ( )
( | ) 푑푤       (6) 

= 퐶 + ∫푞(푤) log ( )
( | ) 푑푤         (7) 

Due to the form of the prior and observation models, the integral cannot be calculated. To solve this problem, a 

lower bound for the distribution 푝(푤|푦) is found out with a function that renders the calculation of 퐾퐿(푞(푤)‖푝(푤|푦)) 

to be possible when 푝(푤|푦) is replaced by such function.  

푝(푤) ≥ 퐶 푒푥푝 −∑ 휉 휔 − 휌∗ 휉 = 푀(푤, 휉)      (8) 

Where 휉 = (휉 , … , 휉 ) and 퐶  is a constant. To obtain a lower bound on 푝(푦|푤), the variational bound is applied to 

the sigmoid function. Then, 

log 푝(푦|푤) = ∑ log 푝 푦 푤 ≥ log퐻(푤,훾, 푦)       (9) 

Where log퐻(푤, 훾,푦) = ∑ 푦 푤 푥 − 휆 훾 푤 푥 − 훾 − − log(1 + 푒 )  

Where 훾 = (훾 , … ,훾 ) and 훾 ∈ ℝ with 휆 훾 = − .  

Using the lower bounds in the above equations, the joint distribution is bounded below by 

푝(푤, 푦) ≥ 푀(푤, 휉)퐻(푤, 훾,푦) = 퐹(휉,훾,푤,푦)       (10) 

푝(푤, 푦)is replaced by this lower bound. 푞(푤)is a Gaussian distribution with mean and covariance matrix given by 

훴 = 	Ξ + 2∑ 휆 훾 푥 푥          (11) 

http://www.ijircce.com


         
          
                  ISSN(Online): 2320-9801 
              ISSN (Print):  2320-9798                                                                                                                             

                                                                                                               
International Journal of Innovative Research in Computer  

and Communication Engineering 
(A High Impact Factor, Monthly, Peer Reviewed Journal) 

Website: www.ijircce.com  

   Vol. 5, Issue 10, October 2017  

Copyright to IJIRCCE                                                             DOI: 10.15680/IJIRCCE.2017. 0510019                                         16218      

 

〈푤〉 = 훴 ∑ 푦 − 푥          (12) 

With Ξ = diag(휉 ), 푖 = 1, … ,푀. The update of auxiliary vectors ξ and 훾 is given by 

휉 = arg max 〈log퐹(휉,훾,푤,푦)〉 ( )        (13) 

훾 = arg max 〈log퐹(휉,훾,푤,푦)〉 ( )        (14) 

All parameters including the distribution of the adaptive coefficients 휔  are estimated. The estimates of the adaptive 

coefficient vector are given by 〈푤〉. If a new sample 푥∗ is given, it is utilized as predictive distribution of the classes 

푝(풞 |푥∗) = 〈 〉 ∗          (15) 

푝(풞 |푥∗) = 1− 푝(풞 |푥∗)         (16) 

 
D.Enhanced image descriptor based patch classification  

 Gabor and Spectral histogram features 
A multi-scale Gabor filter is the most used texture descriptors based on the wavelet transform. The Gabor 

representation is optimal for reducing the joint Two-Dimensional (2D) uncertainty in space and frequency [11]. This 
representation is well suited for the texture detection and classification process. The Gabor filter bank for 휃 =
6	표푟푖푒푛푡푎푡푖표푛푠	푎푛푑	휑 = 4	푠푐푎푙푒푠. Each spectral band should be filtered for every parameter combination. The mean 
and standard deviation are extracted and maintained as Gabor features for each computed patch. The size of Gabor 
feature vector for an image patch with number of spectral bands ‘nb’ is 휃 × 휑 × 푛푏 × 2[12].The spectral histogram is 
the basic and frequently used descriptors that define the spectrum distribution in an image. By inspiring from the color 
histogram, this is extended to the high spectral resolution of a multispectral image. A spectral histogram descriptor 
captures the distribution of spectral value for image search and retrieval with sufficient accuracy [13]. For this image 
descriptor, the spectral histogram with ℎ푏 = 64 number of histogram bins is computed for each number of 
multispectral image bands. This results in the dimensionality reduction of the feature vector [14]. The computed 
histogram vectors are merged together into the spectral histogram feature vector of size ℎ푏 × 푛푏. 

 
 Concatenated Gabor-histogram features 

The combination of Gabor features with the spectral histogram features computed for all spectral bands is proposed. 
The texture band is generated using the average of whole spectral bands available in the multispectral image. A feature 
vector with the size of 2 × 휃 × 휑 × ℎ푏 × 푛푏 elements is computed for a multispectral image. Here, 휃 is the number of 
orientations and 휑 is the number of frequencies of the Gabor filter. The term ‘hb’ denotes the number of bins for each 
computed histogram and ‘nb’ indicates the number of bands in the multispectral image. 

 
 Bag of Words (BoW) framework 

In the BoW model, vector quantization of the spectral descriptors in an image is performed against a visual 
codebook. Different classification results may be obtained based on the features used for codebook generation. For the 
BoW feature descriptors, the spectral indices computed for each pixel [15] are evaluated and radiance values are used 
for each pixel [16] with a dictionary size of 100 words. The codebook is generated on 10% of the features by using k-
means clustering technique. The size of the feature vector for a patch-based BoW is equal to the number of distinct 
words generated [12]. 

 
E. Neural Network Ensemble Classifier 

A neural network ensemble is a combination of a set of neural networks for a regression problem by computing the 
arithmetic mean of their outputs 표 [17]. 
표 (푥 ) = ∑ 표 (푥 )         (17) 
Where 푥  is the ith input vector. Liu and Yao [18] introduced Negative Correlation Learning (NCL) for negatively 

correlating the error of each network with the ensemble. Instead of separately training each network, a penalty term is 
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introduced in this method. This reduces the association between the errors of the network and rest of the ensemble. In 
this work, Regularized NCL (RNCL) [19] is considered in this ensemble method. This method improves the 
performance of neural network ensemble is improved by adding a regularization term with the objective of minimizing 
the over-fitting problem. This regularization helps the network to increase the generalization capability. 

 
F.Fuzzy inference system 

For the multispectral image classification using Fuzzy systems, four indexes are defined as input variables to the 
Fuzzy Inference System (FIS) to describe each pixel. These indexes are mapped to the corresponding fuzzy sets with a 
given membership degree. The indexes are computed to obtain a better representation of vegetation, building, water 
and roads in the scene. This makes possible to obtain more separable classes in the dataset. The indexes for every pixel 
are computed as [20] 
푁퐷푉퐼 =            (18) 

푊퐼 = 푁퐼푅           (19) 

퐵퐼 =            (20) 

푅퐼 =            (21) 

Where NIR, R, G and B are the near-infrared, red, green and blue spectral bands. The index varies between [-1,1] 
and provides an excellent representation of the vegetation. If NDVI is closer to 1, the pixel belongs to the trees or 
scrubs. NDVI highlights the areas involving vegetation. But, it is impossible to identify the type of vegetation in that 
area. BI is used to identify the buildings. The value of BI ranges from -1 to 1. If BI is closer to 1, the pixels are 
compatible with the building class. WI is used to identify the water and shadow classes. It is characterized by the near-
infrared spectral band. The intensity values of WI are normalized from 0 to 1. RI is used to identify the roads in the 
scene. 

 
G.Self-taught learning frameworks 

The models with shallow and deep feature representations are used to determine the utility of self-taught training 
method [21]. Each model is trained on multiple unlabeled HSI datasets for adding spatiospectral variation to the filters 
learned by the models. After training, the models are used for extracting the features from the three labeled datasets and 
applied to a classification algorithm. Multiscale Independent Component analysis (MICA) learns a set of low-level 
feature extracting filters at multiple scales. A contrast-stretched image is applied as the input to the MICA i.e., the 
pixels are normalized between 0 and 1. Subsequently, mean pooling is applied to the feature response array for 
incorporating translation robustness into MICA. The Stacked Convolutional Autoencoders (SCAE) can extract higher 
level features than MICA. An autoencoder is a type of neural network that is trained in an unsupervised way for 
learning encoded data representation. A typical autoencoder ‘f’ is given by 푥 = 푓(푥), where ‘x’ is the input. The 
autoencoder has internal constraints so that the hidden layers of neural network will learn the interesting features. After 
training, the output of the hidden layers can be used as an alternative encoding of data. Each autoencoder in SCAE is 
trained typically and individually.  

 
H.Spectral–Spatial Shared Linear Regression Method (SSSLR) 

Spatial structure is highly significant for enhancing the HSI classification performance. As the pixels within a small 
spatial neighborhood are susceptible to own the same thematic classes, the combinations of the spatial pixels can be 
discriminated than the individual pixel. If a target pixel 푥  is given, the spatial neighborhood of that pixel is denoted as 
푋 = 푥 , … … ,푥 	∈ 푅 × . The center pixel is 푥 , 푥  is one spatial pixel of the center pixel and ‘K’ is the 
neighborhood scale. A convex set is used to represent the spatial structure of 푥 [22] 
퐻 = ℎ = ∑ 푎 푥 ∑ 푎 = 1         (27) 

This can also be represented as 

퐻 = {ℎ = 푋 푎 |푒 푎 = 1}         (28) 
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Where 푎 = [푎 , … , 푎 ] and e is a column vector. For selecting a proper point  ℎ  from the convex set to predict the 

label of the sample 푥 , a Spectral-Spatial Linear Regression (SSLR) model is proposed as described below 

min , ∑ ∑ 푦 −푤 ℎ + 휆 푤        (29) 

min , ∑ ∑ 푦 −푤 푋 푎 + 휆 푤        (30) 

Such that 푒 푎 = 1,				푖 = 1, … ,푁 

 
I.Gabor Superpixelbased spatial–spectral SchroedingerEigenmaps (S4E) and SVM-based multitask learning (GS4E-
MTLSVM) 

For supervised HSI classification, there should be ‘C’ classes in the scene and ‘L’ number of total training samples 

for all classes. For each feature cube 푀 ∈ ℝ × × , 푡 = 1, … ,푇 representedby 퐴 = 푎 , ,푎 , , … , 푎 , ∈ ℝ × , the 

training set of the cth class. Each column 푎 , (푗 = 1,2, … , 퐿 ) of the training set is a K-dimensional feature vector and 

푦 ∈ ℝ  is a test sample. The location axes of the training and testing sequences are same for all feature cubes. In 

addition, let 퐴 = [퐴 ,퐴 , … ,퐴 ] ∈ ℝ ×  denote the corresponding training samples in 푀 . This is the concentration of 

‘L’ training samples from all classes, where 퐿 = 퐿 + 퐿 + ⋯+ 퐿 . For the SVM-based multitask learning framework, 

the probability output of SVM should be estimated as follows [23] 

푝 = 푃(푦 = 푐|푦 ),			푐 = 1, … ,퐶         (31) 

The one-on-one strategy used for multiclass classification in SVM is adopted. The pairwise class probability 

between classes ‘c’ and ‘d’ are defined as 

푟( ) = 푃(푦 = 푐|푦 = 푐	표푟	푑,푦 )         (32) 

If 푓  is the decision value of 푦 , trained by SVM from the training set 퐴 , 푟( ) is computed by 

푟( ) =            (33) 

Where ‘a’ and ‘b’ are estimated by reducing the negative log likelihood of training data. After 푟( ), 푐 =

1, … ,퐶	푎푛푑	푑 = 1, … ,퐶 values for all classes are calculated, the probability vector 푝 = [푝 ,푝 , … ,푝 ] is calculated as 

min ∑ ∑ (푟 푝 − 푟 푝 ):         (34)Such 

that 푝 ≥ 0		c,∑ 푝 = 1 

Finally, the class label of y is associated with the class with the largest probability over all the ‘T’ tasks, i.e. 

퐶푙푎푠푠(푦) = arg max ∑ 푝         (35) 

 
J.Superpixel-Based Multiple Local CNN Model 

 Multiple local region feature extraction 
The CNN acts as a feature extractor for each local region. The CNN is inspired by biological research results. In 

general, the CNN involves multiple convolution processes and fully connected process. The convolution process 
involves four layers such as convolution, pooling, non-linear transformation and local response normalization layers. 
The central region 푅  is used to describe each layer of the convolution process. Let 푅 ∈ ℝ × ×  be the input image of 
the CNN, where ‘h’ denotes height, ‘w’ indicates width and ‘c’ denotes the channels. The convolution layer calculates 
the convolution of the input image with filter Kernels ‘W’ and adds a bias ‘b’ 
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푍 = 푊⊗푅 + 푏          (49) 
Where ⊗ represents the convolution process and 푍 ∈ ℝ × × is the output. The rectified linear unit (ReLU) [24] is 

used as the non-linear transformation layer 
푍 = 푚푎푥{0,푍}          (50) 
For the local response normalization layer [25], it is to be applied after the ReLU 

푍 , = 푍 , 푘 + 훼∑ 푍 ,
( , ⁄ )

( , ⁄ )        (51) 
Where 푍 ,  values indicate the activity of a network computed by the kernel ‘i’ at the position (x, y) after applying 

ReLU. 푍 , denote the activity of local response normalization, ‘N’ represents the total number of kernels, 푘,푛,훼 denote 
constants and 훽 is hyperparameter. Here, the max-pooling is selected for downsampling 푍.  

III. COMPARATIVE ANALYSIS 
 
This section presents the comparative analysis of the HSI and multispectral image classification techniques. 
 

Table I Comparative Analysis of HSI and multispectral image classification techniques 
Author and 
References 

Year Title Techniques Advantages 

M. Ye, Y. Qian, 
J. Zhou, and Y. 
Y. Tang [3] 

2017 Dictionary Learning-
Based Feature-Level 
Domain 
Adaptation for Cross-
Scene Hyperspectral 
Image Classification 

Sparse logistic 
regression 

 It can deal with the residual spectral shift 
between source and target scenes to improve the 
cross-scene classification performance. 

 It simultaneously train two classifiers 
respectively for source and target scenes by 
ℓ , norm regularization. 

L. Fang, C. 
Wang, S. Li, 
and J. A. 
Benediktsson[8] 

2017 Hyperspectral Image 
Classification via 
Multiple-Feature-
Based Adaptive 
Sparse Representation 

Multiple-feature-based 
adaptive sparse 
representation 
(MFASR) method 

 The proposed MFASR method delivers good 
classification accuracy. 

 

J. G. Serra, P. 
Ruiz, R. 
Molina, and A. 
K. 
Katsaggelos[10] 

2016 Bayesian Logistic 
Regression With 
Sparse General 
Representation Prior 
For Multispectral 
Image Classification 

Super-Gaussian (SG)  The proposed method performs well in 
multispectral classification problems. 

 Moreover, they can identify the most relevant 
bands for classification and discard useless 
information. 

 The computation cost is low. 
F.-A. 
Georgescu, C. 
Vaduva, D. 
Raducanu, and 
M. Datcu[12] 

2016 Feature Extraction for 
Patch-Based 
Classification 
of Multispectral Earth 
Observation Images 

Enhanced image 
descriptors based patch 
classification 

 By combining texture and spectral features, 
more powerful descriptors can be obtained. 

 Better performance is achieved by using spectral 
indices descriptors, which are very fast and easy 
to compute. 

X. Fu [17] 2016 Multispectral Image 
Classification Based 
on Neural 
Network Ensembles 

Neural Network 
Ensemble (NNE) 
classifier 

 NNE classifier recognizes different classes 
consistently with a high degree of accuracy. 

P. J. S. Vega, 
V. A. A. 
Quirita, P. M. 
Achanccaray, 
R. Tanscheit, 
and M. 
Vellasco[20] 

2016 A Fuzzy Inference 
System for 
Multispectral Image 
Classification 

Fuzzy Inference System 
(FIS) based image 
classification 

 By combining the indexes computed from image 
spectral bands, it is possible to get more 
separable classes, and achieve better 
classification results. 

R. Kemker and 
C. Kanan[21] 

2017 Self-Taught Feature 
Learning for 
Hyperspectral 
Image Classification 

Self-taught learning 
frameworks for HSI 
classification. 

 It allows massive quantities of unlabeled HSI 
data to be used for training.  

 This enables good performance to be achieved 
across data sets using only a small amount of 
labeled data. 

H. Yuan and Y. 
Y. Tang [22] 

2017 Spectral–Spatial 
Shared Linear 

Spectral–Spatial Shared 
Linear Regression 

 Spectral–spatial methods obtain higher 
classification accuracies based on the spectral 
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Regression for 
Hyperspectral Image 
Classification 

method (SSSLR) information. 
 The shared structure learning model can further 

help to learn a more discriminative projection 
for classification. 

S. Jia, B. Deng, 
J. Zhu, X. Jia, 
and Q. Li [23] 

2017 Superpixel-Based 
Multitask Learning 
Framework 
for Hyperspectral 
Image Classification 

Gabor Superpixelbased 
spatial–spectral 
SchroedingerEigenmaps 
(S4E) and SVM-based 
multitask learning 
(GS4E-MTLSVM) 

 The proposed method can achieve more distinct 
features, which greatly increase the 
computational efficiency of the dimensionality 
reduction procedure. 

 Minimum computational time. 

W. Zhao, L. 
Jiao, W. Ma, J. 
Zhao, J. Zhao, 
H. Liu  
[26] 

2017 Superpixel-Based 
Multiple Local CNN 
for 
Panchromatic and 
Multispectral 
Image Classification 

Superpixel-based 
multiple local 
convolution neural 
network (SML-CNN) 
model 

 The accuracy rate is improved.  

IV. CONCLUSION  
 
Satellite image classification is an exciting area of research due to the availability of large amount of remotely 

sensed data and requirement in multiple applications. The main function of the classification technique is to generate 
land cover maps from the remote sensed data. The success of the image classification approach depends on many 
factors such as availability of high-quality image and design of a proper classification procedure. This survey provided 
a comparative analysis between different types of HSI and multispectral image classification techniques and working 
knowledge about these classification methods. 
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