

 Volume 10, Issue 7, July 2022

Impact Factor: 8.165

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6520

Placement Application using Microservice
Architecture and Spring Framework

Narendra V, Nikhil H P, Nikhil V, R Sai Vamshi, DR. Harish Kumar B T

UG Student, Dept. of CSE, Bangalore Institute of Technology, Bangalore, Karnataka of India

UG Student, Dept. of CSE, Bangalore Institute of Technology, Bangalore, Karnataka of India

UG Student, Dept. of CSE, Bangalore Institute of Technology, Bangalore, Karnataka of India

UG Student, Dept. of CSE, Bangalore Institute of Technology, Bangalore, Karnataka of India

Assistant Professor, Dept. of CSE, Bangalore Institute of Technology, Bangalore, Karnataka of India

ABSTRACT: Placement Manager application based on spring framework and Micro Services paradigm had been
designed and developed in this paper. This system was designed to overcome the difficulty of filtering the students
after the registration to visit takes place through a google form, automate the student list generation process, and keep
track of the offers issued by the company in the respective drives conducted by them. This application is designed to
overcome the difficulties mentioned. Since monolith applications have scaling issues and must be managed by a single
team, we use microservices for developing this application so that each microservice can be managed and owned by a
single team. Model-View-Controller design patterns of spring have been used in the architecture. Spring Provides the
best code reuse and has the property Inversion-of-Control. The developed system is a multitier system including a
Controller layer, Service layer, Repository layer, and database layer, which can separate controller logic from business
logic and improve the system's reusability, reliability, and maintainability with low coupling

KEYWORDS: Microservices, Spring, Multitier System, MVC Architecture, Inversion of Control, Placement
Application

I. INTRODUCTION

The rapid evolution of internet technology has made greater demand to develop applications that could run on their
browses so that people have the entire world in their small hand-held devices. Spring is an open-source framework
based on J2EE and uses a layered approach to integrate well with the internet. Spring is a Lightweight J2EE application
development framework that uses MVC (Model-View-Controller) to separate business logic from the view and the
roles of controllers, services, repository, and modals objects.

Microservices are software architecture that allows decomposing a system, its components, or its functionalities into
a set of small services that are implemented, deployed, and managed independently. It also helps to develop the
heterogeneous development of services using the required language based on the functionality requirement, where one
microservice could be developed using Node, another using Spring, and another using Flask similarly it can be used.

In each professional course offering colleges/institutions, placement activity will be going on every year, and it is a
bad practice to manage the students participating in drive activities and offer management manually. Since there may
be mistakes, errors, or even data may get lost. It is tough to search and filter out students during the drive based on their
offers and the minimum eligibility specified by the company during the drive. This application tries to solve problems
like student data management, offer management, profile management, resume management, and student list
generation that take place automatically once the registration has been closed.

Section II of this paper discussed the spring framework working mechanism. Section III of this paper discusses what
microservices are, their advantages, difficulties while developing applications using microservices, and how we can
resolve those difficulties with existing dependencies and working mechanisms. Section IV and V of this paper
discussed system design and implementation. Section VI and VII of this paper discussed the throughput of
microservices and monolith applications. Sections II and III are related works. Sections IV and V are proposed
solutions.

.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6521

II. SPRING WORKING MECHANISM

Spring is a framework used for creating web applications in Java language. It was created as an alternative to
programming applications that use EJB (Enterprise Java Beans) technology (Enterprise Java Beans), which is not liked
by programmers [1]. The one main advantage is that we can only include the modules needed. We need to include all
modules even though they are not needed.

The most critical group of modules that forms the core of the entire application is Core Container. It consists of the
following modules [2]:

 spring-core
 spring-beans
 spring-context
 spring-context-support
 spring-expression.

The core modules are depicted as shown in figure 1.

 Fig.1. Spring Framework Structure Fig.2. Spring Application Work Flow

Figure 2 shows the workflow of the spring application, where first, the client initiates a request, and that request gets
received in Tomcat Filter. The request goes to the dispatcher servlet, where the Handler Mapping service is taken to
check to which controller the request needs to be sent. After that, the request must go through a series of filters like a
security check. After passing all filters designed, the request will reach the controller, which needs to be executed. The
Business Service is called from the controller for that functionality to be executed. Then the business service will send
the response, and that response is sent back to the dispatcher servlet, from there a view file is selected, the controller
specifies that then the view is rendered, and finally, the response is sent back. This application does not use the view
part since it sends a response in JSON format of the modal class. The above things are mentioned in [3].

III. MICROSERVICES

Fig.3. Micro Services Conceptual Design

Now let us look at how a request goes in the microservices architecture pattern. Figure 3 shows the overall
conceptual design of the microservices. First, the request goes to the API Gateway; the gateway checks the URL and
determines the microservice to which the request must be served. Then, the gateway contacts the Service Registry to
get the address where the microservice is present. Then after getting the location gateway, redirects the request to that
microservice. In Figure 3, there are five microservices present there, and API Gateway (which redirects the request to

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6522

the microservice to which it is intended for execution and has a load balancer module, which is used for equal
distribution of load among multiple instances of a microservice present), Service Registry (which keeps in track of each
service present there. When a service starts, it first must register itself to Service Registry by specifying the service
name and location details. The service must send its presence after a stipulated amount of time as specified by the
Service Registry. If the service does not send its presence, the Service Registry marks that instance as down and does
not forward requests to that service. If the service does not respond after a threshold, then that instance is dropped. The
primary purpose of the Service registry is to keep track of services running up), Log represents the server where all
microservices log their content there so that the logs can be easily accessible, SAGAs [4] is a module used to deal with
transactions that span multiple microservices as specified, and the last Module is Circuit Breaker, this module uses the
pattern to check if the dependency microservice is working fine or not based on the last specified number of requests
and short the requests, this process provides the characteristics Fault tolerance.

The Steps in migrating monolith to microservice architecture are specified [5], and the respective migration steps,
technology, and each step performance analysis [6]. [7] Shows how Heterogenous design of Micro-Services. [8] Shows
how the complete functionality can be divided into microservices so that each microservice can be owned by a single
team and can be implemented and reduce the application delivery time to the customer. The Comparison of the Service
Registry technology of microservice is discussed in [8]. [11] It shows how deployment patterns and performance
analysis of the microservices could be made in AWS by taking a policy example, where the functionality is divided into
two parts. The first part or service fetches the policy from the database. In contrast, the second took custom input from
the user and calculated the respective parameters needed based on application functionality.

IV. SYSTEM ARCHITECTURE

Fig.4. Placement Application Microservices Architecture

Figure 4 shows us the detailed architecture of the placement application. It consists of 10 servers with three
microservices: Student Admin Service, Placement Service, and Media Role Service. Each microservice performs
unique tasks and only interacts with each other only when necessary. Whenever multiple user requests service from
student admin and placement services, the API gateway will redirect the request to service so that both tasks are
performed simultaneously. Due to this simultaneous process, we can get higher throughput than monolith applications.
We have divided the entire functionality of the application into three modules or microservices. The description of each
module is as follows:

A. Student Admin Service

This service or module deals with the entities like students, admin, and branch and storing their respective
details.This module is responsible for locking and unlocking student details during the list generation.

B. Placement Server

This service or module deals with entities like companies, their visits, activities, and their registrations, along with
company offers. This module is also responsible for generating the student list after the closing registration time passes
of a particular visit. When the registration for the company starts, it fetches student details from the student admin
service server. It checks if the student is eligible to participate in the given drive by checking eligibility criteria and the
offers held by the student. It registers students only if they are eligible to participate in the drive.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6523

C. Media Role Service

This service or module is responsible for storing all the application's media requirements like the students' resume
and profile, Job Description, and the student list generated for a visit. This module also has an asynchronous activity;
when a student or company visit is deleted, all their respective files are deleted based on notifications sent by the
respective microservices.

D. Config Server

This module is responsible for taking the configurations of the respective service based on the stages of the
application and the environment in which the application or service is running.

E. Distributed Tracing Server

We know that whenever a request comes, we need to track where the request has been spanned and where errors
occurred. The tracked details are the customer IP, micro service IP, request path, and time spent by request in each
service. This server or module is responsible for keeping track of these details. An example is shown in figure 5. This
shows the details timeline as specified with the above details.

Fig.5.Distributed tracing of a request

F. Rabbit MQ Server

In our application, we need to have asynchronous activities to be performed. With the help of this server, we can
perform these activities. This server acts as a message broker between microservices.

G. Redis Server

This server acts as a centralized place for cache management.

H. Firebase Storage

Google Firebase storage acts as a centralized cloud service, storing all the application's required media files.

V. IMPLEMENTATION

In this section, we go to the implementation part of the microservices that we have designed, or framework is used,
and minor customization is performed as required by the application. Here we will discuss the spring framework
concerning the implementation part. Here, we also take basic auth as security for the applications.

A. Service Registry

Here, we have used the Eureka server to do the service registry job. To create this, create a basic spring boot starter
project and add the two dependencies specified in figure 6. The first dependency is used to add spring boot security, and
the second is to add the eureka server module to an application.properties file in src/resources section add the two lines
as specified in figure 7 for the basic authentication and default properties to be mentioned for the eureka server such as
fetchRegistry property must be set to false, because this server need not fetch the instances of different microservice,
perferIpAddress is set to true if we need to if registry must contain a map of service name and IP-address:port as value
format, registerWithEureka is set to false since the server should not register to itself. Finally, we need to add an
annotation to the main class of the spring boot project, as shown in figure 8.

Fig.6. Service Registry Dependencies Fig.7. Eureka Server Properties file

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6524

Fig.8. Eureka Server Enable

B. Config Server

We Create a new spring-boot starter project, then add the dependency as specified in figure 9. Then we need to
configure a directory as a store of all properties of microservices running; here, we have used Git Repository. We need
to mention the values for the properties, as shown in figure 10. The search-paths property is set to the application
specified to search for a directory of the application name, then takes the environment value, then sends the property
file, and the security properties are added. The last thing is to add annotation, as specified in figure 11, to the main class
of the spring-boot project created.

Fig.9. Config Server Dependency

 Fig.10. Config Server properties Fig.11. Config Server Enable Annotation

C. API Gateway

Create a new spring-boot starter project, add the dependency specified in figure 12, and add spring security
dependency. Here it is optional to add security based on the requirement. We have chosen to add the security in the
respective microservice and create a new bean as specified in figure 13, where it takes RouteLocatorBuilder as an
argument, then uses the object then calls routes() function, then route function where the inner function takes the
parameter where we need to specify the URL patterns as an array, then the microservice to which it needs to be
redirected, where need to precede the microservice name by lb:// to indicate to contact service registry and do load
balancing between the instances. Here in our application, we have created three arrays, specified the pattern of routes,
and then added them. One such example of the array of the student-micro-service is shown in figure 14.

Fig.12. API Gateway Dependency Fig.13. Route Locator Bean

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6525

Fig.14. Student Admin Service routes

D. Micro Service (Student Admin Service, Placement Service, Media-role Service)

Here, we will consider a generalized way to define a microservice; we will hide the business login implementation.
Figure 15 shows the dependencies needed for each microservice containing the business functionality to be included in
pom.xml.

TABLE 1. DEPENDENCIES LIST

No
Dependencies

Group ID Artifact ID

1 org.springframework.boot spring-boot-starter-parent

2 org.springframework.boot spring-boot-starter-actuator

3 org.springframework.boot spring-boot-starter-data-jpa

4 org.springframework.boot spring-boot-starter-security

5 org.springframework.boot spring-boot-starter-validation

6 org.springframework.boot spring-boot-starter-amqp

7 org.springframework.boot spring-boot-starter-web

8 org.springframework.boot spring-boot-starter

9 org.springframework.boot spring-security-test

10 org.springframework.boot spring-boot-starter-aop

11 org.springframework.boot spring-boot-starter-data-redis

12 org.springframework.boot spring-boot-devtools

13 org.springframework.boot spring-security-test

14 org.springframework.cloud spring-cloud-starter-netflix-
eureka-client

15 org.springframework.cloud spring-cloud-starter-openfeign

16 org.springframework.cloud spring-cloud-starter-config

17 org.springframework.cloud spring-cloud-starter-bootstrap

18 org.springframework.cloud spring-cloud-starter-sleuth

19 org.springframework.cloud spring-cloud-sleuth-zipkin

20 mysql mysql-connector-java

21 org.projectlombok lombok

22 org.apache.poi poi-ooxml

23 io.github.resilience4j resilience4j-spring-boot2

24 redis.clients Jedis

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6526

No
Dependencies

Group ID Artifact ID

25 com.googlecode.json-simple json-simple

26 io.jsonwebtoken Jjwt

27 javax.xml.bind jaxb-api

28 com.google.firebase firebase-admin

29 org.springframework.boot spring-boot-starter-mail

Here we will explain only the essential dependencies, table 1 shows the 28 dependencies used in 3 micro services,
6th dependency is used to add dependencies to send message to a Message brocker,10th dependency to include Aspect-
oriented-Programing that is needed for 23rd dependency, 11th dependency is used for adding redis server contact
implementing functionalities for application to call for cache, 14th dependency is added to include the functionality for
registering to the service registry, 15th dependency to add inter communication between the micro services, 16th
dependency to include the modules that re needed to contact the config server and get the required properties to start
microservice,18th and 19th dependency are added to have distributed tracing to establish between the microservices
here we use ZIPKIN as distributed tracing server, 20th to have mysql connected since here we have used MySQL
database, 21st dependency to have lambok to generate getters, setters and builder just by adding annotations to class,
22nd dependency to create Excel files, 26th dependency to support JSON-web token type of tracking of the clients to
get their identity and security parameters, 28th dependency is used to have access to firebase storage for uploading and
downloading of the media files required by the application, 29th dependency to include mail functionalities.Here we
will discuss the essential properties that need to be added for each functionality to work correctly.

Figure 15 shows the properties that need to be added to the property file to get the configuration file from the config
server. The first property is the spring.cloud.config.name, which specifies the application name, spring.cloud.import
specifies the URL of the config server running, username and password are used for primary authentication purpose,
spring.cloud.config.profile property specifies the environment in which the application is running to get the
environment properties, and the last property is spring.cloud.config.enable must be set to true to retrieve the property
file from the config server or else false to indicate using the same property values present in the property file locally
with the project.

Fig.15. Config Client Properties

Figure 16 shows the properties for the Service Registry client implementation, the only property where we need to
specify the URL of the eureka server and add annotation @EnableEurekaClient to the project's main class.

Fig.16. Eureka Client Properties

Figure 17 specifies the properties that need to be added for the spring-data JPA to work concerning the MySQL
database.

 Fig.17. MySQL Properties Fig.18. Spring Mail Properties

Figure 18 specifies the properties that need to be added so that the dependency added will use these properties while
sending mail. Here we use this for the forgotten password to retrieve the passcode to their respective user mailbox.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6527

Fig.19. JWT Properties

Figure 19 shows the properties required for implementing JSON Web token, the first property is secret-key specified
in hex, and the following property is expiration in milliseconds.

Fig.20. Rabbit MQ Properties

In this application, we use the Rabbit-MQ server for implementing the asynchronous messaging between the
applications. The properties that need to be added to the client file are shown in figure 20; The first property specifies
the host IP address where the rabbit-MQ server is running, the second property is the port to which we establish a
connection, 3rd the property specifies the port in which we can publish and receive messages, the following two
properties are used to authenticate to message broker. Figure 21 shows an example of sending a message via message
broker, convertAndSend is the function used to send a message. The first argument is the exchange name, the second
argument is the topic, and the third argument is the object that needs to be sent a message.

Fig.21. Publish Message

Fig.22. Redis Server Client Properties

Figure 22 specifies the essential properties that need to be added for the centralized caching purpose. Figure 23
specifies how we could cache the result using @Cacheable annotation. The first value in the annotation is the domain
class, and the second value is the key that specifies the unique value of a key that needs to be stored in the Redis server.
Figure 24 specifies the annotation called @CacheEvict removed the specified key from the Redis server, and it takes
the same arguments as that of the @Cacheable annotation.

Fig.23. Caching ExampleFig.24. Specifies Cache Multiple Caching and Evict

Fig.25. Circuit Breaker AnnotationFig.26. Circuit Breaker Properties

To add a circuit breaker to the application, we first need to define the properties needed. Those properties are
specified in figure 26; sliding-window-size indicates the maximum number of calls that need to be taken into

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6528

consideration to make a decision; sliding-window-type can take two values one is count_based (based on previous
requests) and time(based on the previous requests in specified seconds),minimum-number-of-calls specifies the
minimum number of requests that need to be considered for analysis, failure-rate-threshold this specifies maximum
failure requests on which we short incoming requests, and permitted-number-of-calls-in-half-open-state specifies the
number of calls to retry to check if the dependent microservice is available and wait-duration-in-open-state specifies the
duration in which the calls are short-circuited (default response is sent).

Fig.27. State Chart Diagram of Circuit Breaker

VI. RESULTS

Here, the test performance was performed by dividing the HTTP requests into two sections, one for the student
admin service and the next for the placement service. In both the requests, some request to the media service was also
performed. As a result, this test gives the overall performance of the application.

The tests were performed on a cluster capacity of 6GB ram; the database has a capacity of 16GB ram, 4VCPUS, and
20GB of storage capacity.

Fig.28. Throughput Graph

TABLE 2. TESTS RESULT DATA

Users
Type of Architecture

Monolith Server Microservices

100 2.38584 2.55177

200 2.2 2.097

300 2.513235 3.92997

400 2.48`965 5.20776

 Tests show that after some threshold amount of user throughput of microservice increases. Here we compare the
Through Put for some of the functionality between the microservices and monolith applications. Figure 27 and Table 2
show the throughput test for the different users. From table 2, we can see that for 100 users, the throughput for
microservices was more, but for 200 users, monolith works better than microservices; for 300 users (we scaled
monolith sever two times, and only placement-service was replicated two times for load balancing), we can see that
monolith application throughput does not increase, whereas the microservice throughput increases linearly.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6529

 Fig.29. CPU Utilization Fig.30. Memory Utilization

Figure 29 and Figure 30 show the CPU and memory utilization for monolith and microservices. We can see that
microservices utilize the maximum amount of memory and CPU provided by the server to provide maximum
efficiency.

VII. CONCLUSION

From the above analysis, we can say that a monolith server can be used where the numbers of users are less. In
contrast, microservicesmust be used when different functions require different scaling and more users.

From this, we can understand the importance of microservices. This project tries to solve the problem of the students
violating the rules and regulations of the placement cell. This project tries to solve the problem of filtering the student
list after accepting student responses.

REFERENCES

1. Arthur and S. Azadegan, "Spring framework for rapid open source J2EE Web application development: a case

study," Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless

Network, 2005, pp. 90-95, DOI: 10.1109/SNPD-SAWN.2005.74
2. M. Gajewski and W. Zabierowski, "Analysis and Comparison of the Spring Framework and Play Framework

Performance, Used to Create Web Applications in Java," 2019 IEEE XVth International Conference on the

Perspective Technologies and Methods in MEMS Design (MEMSTECH), 2019, pp. 170-173, DOI:
10.1109/MEMSTECH.2019.8817390.

3. N. Sharma, B. K. Murthy and P. N. Barwell, "Development of ePPMS for research proposals based on
integrated spring and Hibernate framework," 2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), 2015, pp. 247-250.
4. R. M. Munaf, J. Ahmed, F. Khakwani and T. Rana, "Microservices Architecture: Challenges and Proposed

Conceptual Design," 2019 International Conference on Communication Technologies (ComTech), 2019, pp.
82-87, DOI: 10.1109/COMTECH.2019.8737831.

5. X. Larrucea, I. Santamaria, R. Colomo-Palacios and C. Ebert, "Microservices," in IEEE Software, vol. 35, no.
3, pp. 96-100, May/June 2018, doi: 10.1109/MS.2018.2141030.

6. D. Guaman, L. Yaguachi, C. C. Samanta, J. H. Danilo, and F. Soto, "Performance evaluation in the migration
process from a monolithic application to microservices," 2018 13th Iberian Conference on Information

Systems and Technologies (CISTI), 2018, pp. 1-8, DOI: 10.23919/CISTI.2018.8399148.
7. A. Akbulut and H. G. Perros, "Performance Analysis of Microservice Design Patterns," in IEEE Internet

Computing, vol. 23, no. 6, pp. 19-27, 1 Nov.-Dec. 2019, DOI: 10.1109/MIC.2019.2951094.
8. O. Al-Debagy and P. Martinek, "A Comparative Review of Microservices and Monolithic Architectures,"

2018 IEEE 18th International Symposium on Computational Intelligence and Informatics (CINTI), 2018, pp.
000149-000154, DOI: 10.1109/CINTI.2018.8928192.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

 | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.165 |

|| Volume 10, Issue 7, July 2022 ||

| DOI: 10.15680/IJIRCCE.2022.1007008|

IJIRCCE©2022 | An ISO 9001:2008 Certified Journal | 6530

9. S. He, L. Zhao, and M. Pan, "The Design of Inland River Ship Microservice Information System Based on
Spring Cloud," 2018 5th International Conference on Information Science and Control Engineering (ICISCE),
2018, pp. 548-551, DOI: 10.1109/ICISCE.2018.00120.

10. Y. Jayawardana, R. Fernando, G. Jayawardena, D. Weerasooriya and I. Perera, "A Full Stack Microservices
Framework with Business Modelling," 2018 18th International Conference on Advances in ICT for Emerging

Regions (ICT), 2018, pp. 78-85, DOI: 10.1109/ICTER.2018.8615473.
11. M. Villamizar et al., "Evaluating the monolithic and the microservice architecture pattern to deploy web

applications in the cloud," 2015 10th Computing Colombian Conference(10CCC), 2015, pp.583-590, DOI:
10.1109/ColumbianCC.2015.7333476.

http://www.ijircce.com/

8.165

	A. Service Registry
	Fig.6. Service Registry Dependencies Fig.7. Eureka Server Properties file
	Fig.8. Eureka Server Enable
	B. Config Server
	Fig.9. Config Server Dependency
	Fig.10. Config Server properties Fig.11. Config Server Enable Annotation
	C. API Gateway
	Fig.12. API Gateway Dependency Fig.13. Route Locator Bean
	Fig.14. Student Admin Service routes
	D. Micro Service (Student Admin Service, Placement Service, Media-role Service)
	TABLE 1. Dependencies List
	Fig.15. Config Client Properties
	Fig.16. Eureka Client Properties
	Fig.17. MySQL Properties Fig.18. Spring Mail Properties
	Fig.19. JWT Properties
	Fig.20. Rabbit MQ Properties
	Fig.21. Publish Message
	Fig.22. Redis Server Client Properties
	Fig.23. Caching ExampleFig.24. Specifies Cache Multiple Caching and Evict
	Fig.25. Circuit Breaker AnnotationFig.26. Circuit Breaker Properties
	Fig.27. State Chart Diagram of Circuit Breaker
	Fig.28. Throughput Graph
	TABLE 2. Tests Result data
	Fig.29. CPU Utilization Fig.30. Memory Utilization
	Figure 29 and Figure 30 show the CPU and memory utilization for monolith and microservices. We can see that microservices utilize the maximum amount of memory and CPU provided by the server to provide maximum efficiency.

