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ABSTRACT: The quality of channel estimation (CE) is critical to the performance of wireless communication 

systems. In addition to the conventional model-based CE methods appeared in the past few decades, deep learning 

(DL) based CE methods which is introduced to learn the statistical characteristics of wireless channels, has emerged as 

a promising method in recently years. For analysis, we consider two very common and widely adopted time-varying 

fading scenario. In this fading scenarios, it is generally challenging to analytically tackle the channel estimation 

problem due to its nonlinearity and non-convexity. To intelligently and effectively address this issue, deep learning is 

exploited in this paper. First, in this fading scenario, we propose a novel learning scheme for joint channel estimation 

and pilot signal design by constructing a deep autoencoder via a convolutional neural network (CNN). Through 

extensive numerical simulations, we demonstrate effectiveness and superior performance of the proposed schemes. 
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I. INTRODUCTION  
 

Massive multiple-input multiple-output (MIMO) has many advantages in terms of spectral and energy efficiency and has 

been envisioned as one of the keys enabling technologies in the fifth generation of wireless communication systems 

[1,2]. However, the realization of the potential gains of massive MIMO systems heavily relies on the availability of 

accurate channel state information (CSI). In time-division duplex (TDD) systems, only the uplink channel needs to be 

estimated thanks to the channel reciprocity [3] and the training overhead scales linearly with the number of users, which 

is usually acceptable. However, in frequency-division duplex (FDD) systems, the downlink CSI needs to be estimated 

and fed back to the base station (BS) by the users, where the downlink training and uplink feedback overhead scales 

linearly with the number of antennas at the BS and can substantially deteriorate the system efficiency. Since the 

challenge mainly comes from the large number of antennas, dimension reduction is a natural idea that comes to mind. In 

practice, the BS is usually located in high altitude with few surrounding scatters [4], so the angular spread of incident 

signals of each user at the BS is narrow. Consequently, the channel covariance matrix (CCM) possesses low-rank 

characteristics. To exploit this, the original channels are  

 

approximated with a few main eigenvalues and eigenvectors  in [5,6] to reduce the effective channel dimensionality. 

However, the involved eigen decomposition operation requires high computational complexity and the acquisition of 

accurate CCM in massive MIMO systems also requires extra overhead. An alternative method is to exploit the basis 

expansion model (BEM), which reduces the number of parameters to be estimated by exploiting the channel sparsity in 

specific domains [7,8]. In [7], a spatial BEM has been proposed to transform the problem of estimating channel impulse 

responses to that of estimating spatial basis function weights, which are sparse due to the physical scattering 

characteristics. The spatial and frequency wideband effects are considered in [8], where the channel sparsity in the angle 

and the delay domains is exploited, and angular and delay rotations are used to further enhance the sparsity level. 

Although more computationally efficient, the BEM methods inevitably introduce approximation error to channel 

estimation due to the imperfect model. A comprehensive overview of low-rank channel estimation methods for massive 

MIMO systems can be found in [9].  

 

In conventional massive MIMO systems, each antenna is equipped with a dedicated radiofrequency (RF) chain, which 

leads to high hardware and energy cost when the number of antennas is large. To tackle this issue, the so-called hybrid 

analog-digital (HAD) architecture has been proposed, where the multi-antenna array is connected to only a limited 

number of RF chains through phase shifters in the analog domain [10,11]. However, the channel estimation problem 

becomes more difficult in the context of HAD since now the received signals at the BS are not the original signals at 

antennas, but only a few of their linear combinations. In this situation, the conventional least-square (LS) estimator 

becomes inefficient with dramatically increased overhead [12]. In [13], the complete channels are obtained by LS in the 

preamble stage and directions-of arrival (DoAs) of channel paths are estimated first. Since the DoAs change slowly and 
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can be used for a relatively long period, only channel gains of each path need to be re-estimated. Usually, the number of 

paths is much smaller than that of antennas in millimeter wave systems, therefore greatly reducing the estimation 

overhead. An alternative method is to adopt the compressive sensing (CS) methods to directly recover the sparse 

channels all at once, such as orthogonal matching pursuit (OMP) [14], sparse Bayesian learning (SBL) [14], etc. Through 

embedding the structural characteristics of channel   sparsity, 

 

several improved CS algorithms have been further proposed,  

including structured SBL [12] and   structured      variational  

Bayesian inference (S-VBI) [13]. However, the performance of the CS algorithms heavily relies on the channel sparsity 

and the computational complexity is relatively high. 

 

 
Fig. 1: Tradition and neural network-based channel estimation 

 

The main objective of the work is developing a deep neural network for channel estimation in OFDM massive MIMO 

systems. Adopting the autoencoder architecture, the region-specific measurement matrix is jointly4 learned with the 

channel estimator. The learned measurement matrix significantly improves the signal measurement efficiency than the 

conventional one, and the learned channel estimator has stronger estimation capability than the state-of-the-art CS 

algorithms, as well as lower computational complexity. 

 

II. EASE OF RESEARCH METHODOLOGY 
 

This section deals with the methodology used by us to do the channel estimation. Here, we use deep learning techniques 

to perform channel estimation. For example, by viewing the resource grid as a 2-D image, we can turn the problem of 

channel estimation into an image processing problem, similar to denoising or super-resolution, where CNNs are 

effective. 

Using MATLAB’s 5G Toolbox, we can customize and generate standard-compliant waveforms and channel models to 

use as training data. Using MATLAB’s Deep Learning Toolbox, we use this training data to train a channel estimation 

CNN. This paper shows how to generate such training data and how to train a channel estimation CNN. The work also 

shows how to use the channel estimation CNN to process images that contain linearly interpolated received pilot 

symbols. The work concludes by visualizing the results of the neural network channel estimator in comparison to 

practical and perfect estimators. Figure 2 represents the methodology that are being used to simulate the work described 

in this paper. 
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Fig. 2: Research Methodology flow chart 

 

In this work, The DM-RS symbols in the grid are used for channel estimation. This example does not transmit any data; 

therefore, the resource grid does not include any PDSCH symbols. To flush the channel content, append zeros at the end 

of the transmitted waveform. These zeros take into account any delay introduced in the channel, such as multipath and 

implementation delay. The number of zeros depends on the sampling rate, delay profile, and delay spread. Send data 

through the TDL channel model. Add additive white Gaussian noise (AWGN) to the received time-domain waveform. 

To take into account sampling rate, normalize the noise power. The SNR is defined per resource element (RE) for each 

receive antenna (3GPP TS 38.101-4). For an explanation of the SNR definition that this example uses, see SNR 

Definition Used in Link Simulations. Perform perfect synchronization. To find the strongest multipath component, use 

the information provided by the channel. OFDM-demodulate the received data to recreate the resource grid. Figure 3 

represents the architecture of the proposed convolution neural network based 5G MIMO OFDM channel estimator. 

 
Fig. 3: Layering structure of the proposed5G channel estimator 

 

III. RESULT AND DISCUSSIONS 
 

After successful implementation, we have tested the proposed method using software simulation. For software 

simulation, we have used MATLAB environment with deep learning and 5G toolboxes. For clarity and to show the 

effectiveness of the work, we have compared the obtained result with some standard OFDM MI O channel estimation 

schemes. Here we perform and compare the results of perfect, practical, and neural network estimations of the same 

channel model. To perform perfect channel estimation, use the nrPerfectChannelEstimate MATLAB function using the 
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value of the path gains provided by the channel. To perform practical channel estimation, use the nrChannelEstimate 

function from MATLAB 5G toolbox. This function will estimate the channel with taking into account some standard 

errors and noises during the transmission. To perform channel estimation using the neural network, we must interpolate 

the received grid. Then split the interpolated image into its real and imaginary parts and input these images together into 

the neural network as a single batch. Use the predict (Deep Learning Toolbox) function to make predictions on the real 

and imaginary images. Finally, concatenate and transform the results back into complex data. Fig. 4 represents the 

training statistics of the proposed neural network. From this figure, it is clear that the training completes in 5 epochs and 

we get a validation accuracy of 16.168. The total training time taken by the network while being trained is 3 minutes and 

56 seconds. 

 

 
Fig. 4: The training statistics of the proposed neural network. 

 

Fig 4 represents the result of channel estimation with (a) linear interpolation method (b) Practical estimator method, (C) 

neural network based proposed method and (d) the actual channel. Here from this figure, it is clear that the linear 

interpolation method shows a MSE of 0.17904, MSE of practical estimator is 0.034578 and the MSE of the proposed 

neural network-based method is 0.019588 which is the lowest among all three.  

 
Fig. 5: Bit error rate vs SNR for channel estimation with the proposed method as well as some conventional methods. 
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Fig. 5 represents the bit error rate vs SNR for a transmitter-receiver system having the proposed model as a channel 

estimation method with some other channel estimation methods such as Least Square Estimate (LSE) method and 

theoretical method. Here the DNN based our approach shows similar BER than the theoretical method.  

  

 
Fig. 6: Mean square error (MSE) while estimating channel vs SNR for proposed method as well as other channel 

estimation methods. 

 

Fig. 6 represents the Mean square error (MSE) while estimating channel vs SNR for proposed method as well as other 

channel estimation methods. From this figure. It is clear that we are getting the minimum mean square error for the 

channel estimation using the proposed DNN based channel estimation method. 

 

IV. CONCLUSION 
 

In this paper, we studied the deep learning-based channel estimation for the 5G system with received SNR feedback in 

the quasi-static block-fading and time-varying fading scenarios. In this, we developed the novel technique for the joint 

MIMO channel estimation and pilot signal design by constructing the deep autoencoder with the CNN. In the time-

varying scenario, the new channel estimation technique was proposed by combining the RNN and CNN. For the two 

fading scenarios, we construct the effective GAN and CGAN, respectively, to generate the artificial channel samples, 

and the training procedures using the artificial channel samples were also presented. The effectiveness and the superior 

performance of the proposed schemes were demonstrated through the numerical results. 
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