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ABSTRACT: The buzz word cloud computing provides a virtual area with authentication and supports the information 
storage and retrieval at hand. The cloud computing paradigm along with software tools such as Google’s MapReduce 
and Apache’s Hadoop MapReduce framework offer a response to the problem by distributing computations among 
large sets of nodes.Its a open source for big data application. In many scenarios input data is geo-distributed across data 
centers, and moving forwardly all data to a single data center before processing is expensive. This paper deals with 
executing sequences of MapReduce jobs on geo-distributed datasets.Analysis is done in all possible ways of executing 
such jobs, and propose data transformation graphs. Big-data refers to the very large-scale geographically distributed 
data processing applications that operate on exceptionally large amounts of data.The MapReduce framework generates 
a large amount of intermediate data. Such abundant information is thrown away after the tasks finish, because 
MapReduce is unable to utilize them. Dache acts as a cache memory in data centers to store the data temporarily on 
cloud. In this paper,Dache is proposed, which is  a data-aware cache framework for big-data applications. In Dache, 
tasks submit their intermediate results to the cache manager. Before the computing work is being executed the cache 
manager is raised with queries. 
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I. INTRODUCTION 
 

Big data analysis is one of the major challenges of our era. The limits to what can be done are often times due to how 
much data can be processed in a given time-frame. Big datasets inherently arise due to applications generating and 
retaining more information to improve operation, monitoring, or auditing; applications such as social networks support 
individual users in generating increasing amounts of data. Implementations of the popular MapReduce framework, such 
as Apache Hadoop, have become part of the standard toolkit for processing large datasets using cloud resources, and 
are provided by most cloud vendors. In short, MapReduce works by dividing input files into chunks and processing 
these in a series of parallelizable steps. As suggested by the name, mapping and reducing constitute the essential phases 
for a MapReduce job. In the former phase, mappers processes read respective input file chunks and produce (key,val) 
pairs called “intermediate data”. Each reducer process atomically applies the reduction function to all values of each 
key assigned to it. 
 
1.1 Geo-Distribution 
As the initial hype of cloud computing is high, users are starting to see beyond the illusion computing resources and 
realize that these are implemented by concrete datacenters, whose locations matter. More and more applications relying 
on cloud platforms are geodistributed, for any (combination) of the following reasons: 
(a) data is stored near its respective sources or frequently accessing entities (e.g., clients) which can be distributed, but 
the data is analyzed globally; (b) data is gathered and stored by different(sub)organizations, yet shared towards a 
common goal; (c) data is replicated across datacenters for availability, incompletely to limit the overhead of costly 
updates. 
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1.2 Job Sequences 
To make matters worse, MapReduce jobs do not always come alone. Frequently,sequences of MapReduce jobs are 
executed on a given input by applying the first job on the given input, applying the second job on the output of the first 
job, and so on. An example is the handling of large Web caches by executing an algorithm such as PageRank. This 
algorithm constructs a graph that describes the inter-page relationships, which are refined using further MapReduce 
jobs. Many times distinct MapReduce jobs are applied in sequence rather than iteratively performing the same job. For 
instance the query performed on the geo-distributed Web cache mentioned above may have a filtering step and a 
content search step, which need to be executed as two consecutive jobs. Sequences also arise, indirectly, when using 
PigLatin/Pig to describe complex data analysis tasks from which MapReduce jobs are generated automatically. When 
performing a sequence of MapReduce jobs the number of possible execution paths increases dramatically. 
 
1.3 G-MR 
This paper introduces G-MR, a system for efficiently processing geo-distributed big data. G-MR is a Hadoop based 
framework that can efficiently perform a sequence of MapReduce jobs on a geo-distributed dataset across multiple 
datacenters. With current frameworks for “the cloud” operating only in single datacenters, G-MR thus metaphorically 
speaking acts much like the atmosphere surrounding the clouds. G-MR employs a novel algorithm nameddata 
transformation graph (DTG) algorithm that determines an optimized execution path for performing a sequence of 
MapReduce jobs based on characteristics of the dataset, MapReduce jobs, and the datacenter infrastructure. Our DTG 
algorithm can be used to optimize for either execution time or (monetary) cost. The optimized execution path 
determined by G-MR may be different from the optimum possible execution path. Determining the optimum possible 
execution path for a large dataset is hard since every possible data move has to be considered. G-MR provides a good 
compromise by determining and executing an optimized execution path that performs better than commonly used 
execution paths.  This execution path is then enforced by G-MR through a geo-distributed chain of operations 
consisting of geodistributed copy operations and MapReduce executions performed with Hadoop MapReduce clusters 
deployed in each of the involved datacenters.  
 

II. CACHE DESCRIPTIONS 
 
2.1 Map phase cache description scheme Cache refers to the intermediate data that is produced by worker 
nodes/processes during the execution of a MapReduce task. A piece of cached data is stored in a Distributed File 
System (DFS). The content of a cache item is described by the original data and the operations applied. Formally, a 
cache item is described by a 2-tuple: Origin, Operation. Origin is the name of a file in the DFS. Operation is a linear list 
of available operations performed on the Origin file. For example, in the word count application, each mapper 
node/process emits a list of word, count tuples that record the count of each word in the file that the mapper processes. 
Dache stores this list to a file. This file becomes a cache item. Given an original input data file, word list 08012012.txt, 
the cache item is described by word list 08012012.txt, item count. Here, item refers to white-space-separated character 
strings. Note that the new line character is also considered as one of the white spaces, so item precisely captures the 
word in a text file and item count directly corresponds to the word count operation performed on the data file. The 
exact format of the cache description of different applications varies according to their specific semantic contexts. This 
could be designed and implemented by application developers who are responsible for implementing their MapReduce 
tasks. In our prototype, we present several supported operations: 
 
 Item Count: The count of all occurrences of each item in a text file. The items are separated by a userdefined 
separator. 
Sort This operation sorts the records of the file. The comparison operator is defined on two items and returns the order 
of precedence. 
Selection This operation selects an item that meets a given criterion. It could be an order in the list of items. A special 
selection operation involves selecting the median of a linear list of items. 
Transform This operation transforms each item in the input file into a different item. The transformation is described 
further by the other information in the operation descriptions. This can only be specified by the application developers. 
Classification This operation classifies the items in the input file into multiple groups. This could be an exact 
classification, where a deterministic classification criterion is applied sequentially on each item, or an approximate 
classification, where an iterative classification process is applied and the iteration count should be recorded. 
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2.2.1 Reduce cache 
The file splits from the map phase are included in the cache description. Usually, the input given to the reducers is from 
the whole input of the MapReduce job. Therefore, we could simplify the description by using the file name together 
with a version number to describe the original file to the reducers. The version number of the input file is used to 
distinguish incremental changes. A straightforward approach is to encode the size of the input file with the file name. 
Since we assume that only incremental changes, i.e., appending new data at the end of the file, are allowed, the size of 
the file is enough to identify the changes made during different MapReduce jobs. Note that even the entire output of the 
input files of a MapReduce job is used in the reduce phase, the file splits can still be aggregated.  

 
Fig. 1 The input stream to a reducer is obtained by sorting and then shuffling multiple output files of mappers.  
 
This mapping is used to identify the input to the reducer. 
As shown in Fig. 1, file splits are sorted and shuffled to generate the input for the reducers. Although this process is 
implicitly handled by the MapReduce framework, the users are able to specify a shuffling method by supplying a 
partitioner, which is implemented as a Java object in Hadoop. The partitioner examines the key of a record and 
determines which reducer should process this record in the reduce phase. Therefore, the cache description should be 
attached with the partitioner, which can be implemented as a serialized object in Hadoop. The same input file splits that 
are partitioned by different partitioners produce different reduce inputs, therefore cannot be treated as the same. At last, 
the index of the reducer assigned by the partitioner is attached. The whole description is a 3-tuple: ffile splits, 
partitioner, reducer indexg. The description is completed to accurately identify the input to a reducer. The reducer then 
appends its output with the description to produce a cache item. However, This process is automatically handled by the 
reducers. 
 

III. PROTOCOL 
 
3.1 Relationship between job types and cache organization 
The partial results generated in the map and reduce phases can be utilized in different scenarios. There are two types of 
cache items: the map cache and the reduce cache. They have different complexities when it comes to sharing under 
different scenarios. Cache items in the map phase are easy to share because the operations applied are generally well-
formed. When processing each file split, the cache manager reports the previous file splitting scheme used in its cache 
item. The new MapReduce job needs to split the files according to the same splitting scheme in order to utilize the 
cache items. However, if the new MapReduce job uses a different file splitting scheme, the map results cannot be used 
directly, unless the operations applied in the map phase are context free. By context free, we mean that the operation 
only generates results based on the input records, which does not consider the file split scheme. This is generally true. 
When considering cache sharing in the reduce phase, we identify two general situations. The first is when the reducers 
complete different jobs from the cached reduce cache items of the previous MapReduce jobs, as shown in Fig.2. In this 
case, after the mappers submit the results obtained from the cache items, the MapReduce framework uses the 
partitioner provided by the new MapReduce job to feed input to the reducers. The saved computation is obtained by 
removing the processing in the Map phase. Usually, new content is appended at the end of the input files, which 
requires additional mappers to process. However, this does not require additional processes other than those introduced 
above. 
 
The second situation is when the reducers can actually take advantage of the previously-cached reduce cache items as 
illustrated in Fig. 3. Using the description scheme discussed in Section 2, the reducers determine how the output of the 
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map phase is shuffled. The cache manager automatically identifies the best-matched cache item to feed each reducer, 
which is the one with the maximum overlap in the original input file in the Map phase. 
 

 
Fig. 2 The situation where two MapReduce jobs have the same map tasks, which could save a fraction of 

computation by requesting caches from the cache manager 
 

 
Fig. 3 The situation where two MapReduce jobs have the same map and reduce tasks. The reducers combine 

results from the cache items and the appended input to produce the final results. 
 

IV. APACHE HADOOP 
 
Hadoop is a Java-based MapReduce implementation for large clusters. It is bundled with the Hadoop Distributed File 
System (HDFS), which is optimized for batch workloads such as those of MapReduce. In many Hadoop applications, 
HDFS is used to store the input of the map phase as well as the output of the reduce phase. HDFS is, however, not used 
to store intermediate results such as the output of the map phase. They are stored on the individual local file systems of 
nodes. 
 
The Hadoop follows a master-slave model where the master is implemented in Hadoop’s JobTracker. The master is 
responsible for accepting jobs, dividing those into tasks which encompass mappers or reducers, and assigning those 
tasks to slave worker nodes. Each worker node runs a Task Tracker that manages its assigned tasks. A default split in 
Hadoop contains one HDFS block (64 MB), and the number of file blocks in the input data is used to determine the 
number of mappers. The Hadoop map phase for a given mapper consists in first reading the mapper’s split and parsing 
it into (key1,val1) pairs. 
 
Once the map function has been applied to each record, the TaskTracker is notified of the final output; in turn, the 
TaskTracker informs the JobTracker of completion. The JobTracker informs the TaskTrackers of reducers about the 
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locations of the TaskTrackers of corresponding mappers. Shuffling takes place over HTTP. A reducer fetches data from 
a configurable number of mapper-TaskTrackers at a time, with 5 being the default number.  
 

V. G-MR IMPLEMENTATION 
 
This section describes implementation details of G-MR, which consists of roughly4900lines of Java code. 
 
5.1 Datacenter and Job Configurations 
A GroupManager initiates the G-MR instance by processing an XML-based datacenter configurationfile. This file 
describes the datacenters that may participate in the geodistributed MapReduce jobs handled by G-MR. A sample file is 
given in Figure 4. 
An identifier is provided for each datacenter to refer to it when running MapReduce jobs. Datacenters keep their data in 
independent distributed file systems. Currently GMR supports Amazon Service and Apache HDFS. 
<dcconf> 
<datacenter> 
<id>DC1</id> 
<provider>EC2</provider> 
<fstype>HDFS</fstype> 
<jobtracker> 
a.useast.amazonaws.com:9001 
</jobtracker> 
<filesystem> 
hdfs://b.useast.amazonaws.com 
</filesystem> 
</datacenter> 
</dcconf> 
Fig. 4: Sample datacenter configuration file 
 
Geo-distributed MapReduce job sequences are submitted to the GroupManager using an XML-based job configuration 
file. The GroupManager breaks the sequence down into a number of copy and MapReduce operations. This information 
is passed to JobManager components describing the portion of work that should be executed within their respective 
datacenters. A sample job configuration file is given in Figure 5. 
 
Through a job configuration file, a user can specify sub-datasets of the considered geo-distributed input dataset, mapper 
and reducer classes, associativity of the job, whether DTG algorithm should optimize for cost or time etc. Additionally 
user has the option of manually specifying the functionsMR(), R(),M(), and A(). Size Function has functions 
calculateOutputSize and calculateExecutionTime, that if provided will be used to approximate the output size and 
execution time of the corresponding operations. 
<jobconf> 
<input> 
<datacenter>DC1</datacenter> 
<location>/user/ec2-user1/webinput</location> 
</input> 
<mapper>gmr.WordCountMapper</mapper> 
... 
<optimizeForTime>false</optimizeForTime> 
<mrFunction>gmr.WordCountMRFunction</mrFunction> 
... 
</jobconf> 
Fig. 5: Sample job configuration file 
 
5.2 Executing Individual MapReduce Our execution algorithm supports the scenarios where mapping and reducing 
of a given MapReduce job are executed in two different geographical locations. To implement this, G-MR dynamically 
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generates a straightforward mapper and a reducer for each MapReduce job. A straightforward reducer simply outputs 
intermediate data it receives while a straightforward mapper can read this intermediate data from a distributed file 
system and output the same results the actual mapper would have produced. 
For each job, to determineM()functions we use the user provided mapper and the corresponding generated 
straightforward reducer while using the corresponding generated straightforward mapper and the reducer provided by 
the user to determineR()functions. 
 

VI. CONCLUSIONS 
 
We present the design and evaluation of a data aware cache framework that requires minimum change to the original 
MapReduce programming model for provisioning incremental processing for Bigdata applications using the 
MapReduce model. This paper presents G-MR, a MapReduce framework that can efficiently execute a sequence of 
MapReduce jobs on geo-distributed datasets. G-MR relies on a novel algorithm termed DTG algorithm which looks for 
the most suitable way to perform a job sequence, minimizing either execution time or cost. We illustrate through real 
MapReduce application scenarios that G-MR can substantially improve time or cost of job execution We believe that 
our framework is also applicable to single datacenters with non-uniform transmission characteristics, such as 
datacenters divided into zones or other network architectures. 
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