

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6878

Detecting Liveness and Performance Faults in
a Network

R.Rajani, P.Sumathi, I.V.S.Sai Srinivas

Associate Professor & HOD, Department of MCA, Narayana Engineering College, Nellore, AP, India

Student, Department of MCA, Narayana Engineering College, Nellore, AP, India

Student, Department of MCA, Narayana Engineering College, Nellore, AP, India

ABSTRACT: Networks are getting larger and more complex, yet administrators rely on rudimentary tools such as and
to debug problems. We propose an automated and systematic approach for testing and debugging networks called
“Automatic Test Packet Generation”(ATPG).ATPG reads router configuration and generates a device-independent
model. The model is used to generate a minimum set of test packets to exercise every link in the network or exercise
every rule in the network. Test packets are sent periodically, and detected failures trigger a separate mechanism to
localize the fault. ATPG can detect both functional and performance problems. ATPG complements but goes beyond
earlier work in static checking or fault localization.

KEYWORDS: Test packet generation, network trouble shooting

I. INTRODUCTION

Fig. 1. Static versus dynamic checking

 It is very hard to debug networks. Every day, network engineers struggle with router misconfigurations,
fiber cuts, faulty interfaces, mislabeled cables, software bugs, intermittent links, and a numerous other reasons that
cause networks to misbehave or fail completely. Debugging networks is becoming harder as networks are getting
bigger and are getting more complicated.

II. RELATED WORK

The closest related works we know of are offline tools that check invariants in networks. In the data plane, NICE
attempts to cover the code paths symbolically in controller applications with the help of simplified switch/host models.
In the data plane, Anteater models invariants as Boolean satisfiability problems and checks them against configurations
with a SAT solver. Header Space Analysis uses a geometric model to check reachability, detect loops, and verify
slicing. ATPG complements these checkers by directly testing the data plane and covering a significant set of dynamic

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6879

or performance errors that cannot otherwise be captured. By contrast, the primary contribution of ATPG is not fault
localization, but determining a compact set of end-to-end measurements that can cover every rule or every link.
Disadvantages of existing system:

 Not designed to identify liveness failures, bugs, router hardware or software, or performance problems.
 The two most common causes of network failure are hardware failures and software bugs, and that problems

manifest themselves both as reach ability failures and throughput/latency degradation.

III. SCOPE OF RESEARCH

 The two most common symptoms (switch and router software bugs and hardware failure) are best found by
dynamic testing. Two metrics capture the cost of network debugging—the number of network-related tickets per month
and the average time consumed to resolve a ticket (Fig. 2). There are 35% of networks that generate more than 100
tickets per month. Of the respondents, 40.4% estimate it takes under 30 min to resolve a ticket. However, 24.6% report
that it takes over an hour on average.

Fig. 2. Reported number of (a) network-related tickets generated per month and (b) time to resolve a ticket.

IV. PROPOSED ALGORITHM

 Automatic Test Packet Generation (ATPG) framework automatically generates a minimal set of packets to test
the liveness of the underlying topology and the congruence between data plane state and configuration specifications.
The tool can also automatically generate packets to test performance assertions such as packet latency. It can also be
specialized to generate a minimal set of packets that merely test every link for network liveness. The block diagram of
ATPG is as follows:

 Fig:3 ATPG System Block Diagram

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6880

 This project is organized as follows. First, we introduced the test packet generation, All -pairs reachability table,
fault localization.

 V. IMPLEMENTATION
 1. Test Packet Generation

 We assume a set of test terminals in the network can send and receive test packets. Our goal is to generate a
set of test packets to exercise every rule in every switch function, so that any fault will be observed by atleast one
test packet. This is analogous to software test suites that try to test every possible branch in a program. The broader
goal can be limited to testing every link or every queue.
 When generating test packets, ATPG must respect two key constraints: 1) Port: ATPG must only use test
terminals that are available; 2) Header: ATPG must only use headers that each test terminal is permitted to send.
 ATPG chooses test packets using an algorithm we call Test Packet Selection (TPS). TPS first finds all
equivalent classes between each pair of available ports. An equivalent class is a set of packets that exercises the
same combination of rules. And finally compresses the resulting set of test packets to find the minimum covering
set.

2. Generate All-Pairs Reachability Table Module
 ATPG starts by computing the complete set of packet headers that can be sent from each test terminal to every
other test terminal. For each such header, ATPG finds the complete set of rules it exercises along the path.

TABLE -I
TEST PACKETS FOR THE EXAMPLE NETWORK DEPICTED IN FIG. 3. IS STORED AS A RESERVED

PACKET

 ATPG picks at least one test packet in an equivalence class to exercise every (reachable) rule. The simplest
scheme is to randomly pick one packet per class. This scheme only detects faults for which all packets covered by the
same rule experience the same fault (e.g., a link failure). At the other extreme, if we wish to detect faults specific to a
header, then we need to select every header in every class. ATPG therefore selects a minimum subset of the packets
such that the union of their rule histories covers all rules. The cover can be chosen to cover all links (for liveness only)
or all router queues (for performance only). This is the classical Min-Set -Cover problem. We call the resulting
(approximately) minimum set of packets, the regular test packets. The remaining test packets not picked for the
minimum set are called the reserved test packets. In Table IV, are regular test packets, and is a
re-served test packet. Reserved test packets are useful for fault localization.

3. Fault Localization
 ATPG periodically sends a set of test packets. If test packets fail, ATPG pinpoints the fault(s) that caused the
problem.

 Fault Model: A rule fails if its observed behavior differs from its expected behavior. ATPG keeps track of
where rules fail using a result function R .For a rule r ,the result function is defined as “Success” and “failure”
depend on the nature of the rule
 R(r, pk)={0, if fails at rule r
 1, if succeeds at rule r

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6881

 We divide faults into two categories: action faults and match faults. An action fault occurs when every packet
matching the rule is processed incorrectly. Examples of action faults include unexpected packet loss, a missing
rule, congestion, and miswiring. On the other hand, match faults are harder to detect because they only affect
some packets matching the rule.

VI. EXPERIMENTAL RESULTS

 My prototype was designed to be minimally invasive, requiring no changes to the network except to add

terminals at the edge. A new feature could be added to switches/routers, so that a central ATPG system can
instruct a router to send/receive test packets.

 In a software defined network (SDN) such as Open Flow, the controller could directly instruct the switch to
send test packets and to detect and forward received test packets to the control plane. For performance testing,
test packets need to be time-stamped at the routers.

 We detect congestion by measuring the one- way latency of test packets. In My emulation environment, all
terminals are synchronized to the host’s clock so the latency can be calculated with a single time-stamp and
one-way communication.

 Fig.4 Priority testing: Latency measured by test agents
when (a) low- or (b) high-priority slice is congested.
(c) Available bandwidth measurements when the bottleneck

Fig. 5. October 2, 2012 production network outages
captured by the ATPG system as seen from the lens
of (top) an inefficient cover (all -pairs) and (bottom)
an efficient minimum cover.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6882

 Packet sending:

Packet receiving:

VII. CONCLUSION

 Testing liveness of a network is a fundamental problem for ISPs and large data center operators. Sending probes
between every pair of edge ports is neither exhaustive nor scalable. It suffices to find a minimal set of end-to-end
packets that traverse each link. However, doing this requires a way of abstracting across device specific configuration
files (e.g., header space), generating headers and the links they reach (e.g., all -pairs reach-ability), and finally
determining a minimum set of test packets. Even the fundamental problem of automatically generating test packets for
efficient liveness testing requires techniques akin to ATPG. My implementation also augments testing with a simple
fault localization scheme also constructed using the header space framework. As in software testing, the formal model
helps maximize test coverage while minimizing test packets.
 Network managers today use primitive tools such as and . My survey results indicate that
they are eager for more sophisticated tools. I discovered to our surprise that ATPG was a well-known acronym in

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6883

hardware chip testing, where it stands for Automatic Test Pat-tern Generation. I hope network ATPG will be equally
useful for automated dynamic testing of production networks.

REFERENCES

 References for the project Development Were Taken From The Following Books And Websites:
1. ATPG code repository, [Online]. Available: http://eastzone.github. com/atpg/
2. Automatic Test Pattern Generation. 2013 [Online].

Available: http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
3. P. Barford, N. Duffield, A. Ron, and J. Sommers, “Network perfor-mance anomaly detection and localization,” in Proc. IEEE INFOCOM, Apr.

, pp. 1377–1385.
4. “Beacon,” [Online]. Available: http://www.beaconcontroller.net/
5. Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and faults in IP networks,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1092–

1103, Oct. 2006.
6. C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs,” in

Proc. OSDI, Berkeley, CA, USA, 2008, pp. 209–224.
7. M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE way to test OpenFlow applications,” in Proc. NSDI, 2012, pp. 10–10.
8. A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot, “Netdiagnoser: Troubleshooting network unreachabilities using end-to-end probes and

routing data,” in Proc. ACM CoNEXT, 2007, pp. 18:1–18:12..
9. N. Duffield, “Network tomography of binary network performance characteristics,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5373–5388,

Dec. 2006.
10. N. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Inferring link loss using striped unicast probes,” in Proc. IEEE INFOCOM, 2001, vol. 2,

pp. 915–923.
11. N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic observation,” IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 280–292,

Jun. 2001.
12. P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers: Measurement, analysis, and implications,” in Proc. ACM

SIGCOMM, 2011, pp. 350–361.
13. “Hassel, the Header Space Library,” [Online]. Available: https://bit-bucket.org/peymank/hassel-public/
14. Internet2, Ann Arbor, MI, USA, “The Internet2 observatory data col-lections,” [Online]. Available: http://www.internet2.edu/observatory/

archive/data-collections.html
15. M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measure-ment methodology, dynamics, and relation with TCP throughput,”

IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 537–549, Aug. 2003.
16. P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking for networks,” in Proc. NSDI, 2012, pp. 9–9.
17. R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “IP fault localization via risk modeling,” in Proc. NSDI, Berkeley, CA, USA, 2005,

vol. 2, pp. 57–70.
18. M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic, “A SOFT way for OpenFlow switch interoperability testing,” in Proc. ACM

CoNEXT, 2012, pp. 265–276.
19. K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link, bandwidth,” in Proc. USITS, Berkeley, CA, USA, 2001, vol. 3, pp. 11–

11.
20. B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for software-defined networks,” in Proc. Hotnets, 2010, pp.

19:1–19:6.
21. F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Detecting network-wide and router-specific misconfigurations through data mining,”

IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 66–79, Feb. 2009
22. H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-ishnamurthy, and A. Venkataramani, “iplane: An information plane for

distributed services,” in Proc. OSDI, Berkeley, CA, USA, 2006, pp. 367–380.

BIOGRAPHY

Mrs. R. RAJANI is an Associate Professor and heading the department of MCA,
Narayana Engineering College, Nellore, AP, India. She is pursuing her Ph.D from Sri
Padmavathi Mahila University. She guided many projects for B.Tech and PG students.
Her research interests include Datamining, Query Optimization, Computer Networks and
Software Engineering etc.

http://www.ijircce.com
http://eastzone.github.
http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://www.beaconcontroller.net/
https://bit-bucket.org/peymank/hassel-public/
http://www.internet2.edu/observatory/

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 4, April 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0504044 6884

Ms. P. Sumathi is a student pursuing MCA at Narayana Engineering College, Nellore,
AP, India. During My final semester project work we prepared this paper for publishing
it in an international journal.

Mr. I .V.S. Sai Srinivas is a student pursuing MCA at Narayana Engineering College,
Nellore, AP, India. During My final semester project work we prepared this paper for
publishing it in an international journal.

http://www.ijircce.com

