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ABSTRACT: Deep packet inspection has become a key component in network intrusion detection systems (NIDSes), 
where every packet in the incoming data stream needs to be compared with patterns in an attack database, byte-by-byte, 
using either string matching or regular expression matching.  Regular expression matching, despite its flexibility and 
efficiency in attack identification, brings significantly high computation and storage complex- ities to NIDSes, making 
line-rate packet processing a challenging task. In this paper, we present stride finite automata (StriFA), a novel finite 
automata family, to accelerate both string matching and regular expression matching. Different from conventional finite 
automata, which scan the entire traffic stream to locate malicious information, a StriFA only needs to scan a partial 
traffic stream to find suspicious information. The presented StriFA technique has been implemented in software and 
evaluated based on different traces. The simulation results show that the StriFA acceleration scheme offers an increased 
speed over traditional nondeterministic finite automaton/deterministic finite automaton, while at the same time 
reducing the memory requirement. 
 
KEYWORDS: Deep  packet  inspection  (DPI),  deterministic finite automaton (DFA), network intrusion detection 
systems (NIDSes), nondeterministic finite automaton (NFA). 

 
I. INTRODUCTION 

 
Deep Packet Inspection (DPI)  has  widely  been  deployed in modern network intrusion detection systems (NIDSes) to 
detect attacks and viruses in Internet traffic based on patterns stored in a database. Examples include Snort [1], 
ClamAV [2], and security applications from Cisco Systems [3]. The format of these patterns is either strings or regular 
ex- pressions (regex). To support increasingly complex services, regexes have been used to replace strings in DPI 
because of their better expressiveness and flexibility. However, regex matching also brings significantly high 
computation and storage complexities to NIDSes, which prohibits its usage in applications that require high processing 
speed or have limited memory space. Designing a regex matching engine that achieves both time and space efficiency 
is a great challenge.  
 

Deterministic finite automaton (DFA) and nondeterministic finite automaton (NFA) are two typical finite 
automata used to implement regex matching. DFA is fast and has deterministic matching performance, but suffers from 
the memory explosion problem. NFA, on the other hand, requires less memory, but suffers from slow and 
nondeterministic matching performance. Therefore, neither of them is suitable for implementing high- speed regex 
matching in environments where the fast memory (e.g., cache or on-chip memory) is limited. 
Recently, many research works have focused on improving the   speed   and/or   reducing   the   memory   cost   of   
regex matching [4]–[7]. These schemes can be roughly classified into two categories:  1)  single-byte  stride1   
scanning,  and (2)  multibyte  stride  scanning.  Traditional NFA  and  DFA along with some of their variations, 
including HybridFA [8], k-DFA [9], and XFA [10], [11], scan only one character at a time and belong to the first 
category. The main research focus of schemes in this category is to: 1) reduce the number of active states of the 
automaton during the matching phase, which in turn reduces the number of memory accesses, resulting  in  an  
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improved  matching  speed;  or  2)  reduce the memory consumption by reducing the state number or transition number 
of the automaton. Schemes in the second category scan multiple characters at  a  time, and therefore, naturally provide 
faster matching speed than those in the first category. However, most schemes in the second multibyte stride scanning 
category suffer from two problems. 
1)  Memory  blow-up  problem:  due  to  the  exponential growth  of  transition  numbers  when  the  stride increases. 
2)  Byte alignment problem: for multibyte scanning, every character of the input stream should have the chance to be 
examined as the first character; this requires duplicate automata to return the correct matching results.  
In  this  paper,  I  undertake the  problem of  designing a variable-stride pattern matching engine that can achieve an 
ultrahigh matching speed with a relatively low memory usage. More specifically, we propose a stride finite automata 
(StriFA), which can process a variable number of characters at a time. Compared to other algorithms that also examine 
multiple characters at a time, StriFA is designed to be immune to the memory blow-up and byte alignment problems, 
and therefore, requires much less memory than the previous schemes. The proposed StriFA is a term, describing a 
family of automata and language that share the same concept. Stride deterministic finite automaton (StriDFA) and 
stride nondeterministic finite automaton (StriNFA) are two basic forms of implementation of StriFA. 
 

II. RELATED WORK 
 

Regex matching was originally studied as a topic in au- tomata theory and formal theory in the context of 
theoretical computer science [14]. To accelerate the regex matching in real-world systems, the problem has been 
intensively studied in practical scenarios in recent years. Vulnerability signatures have recently been proposed as an 
alternative to regex, but this still requires a high-speed regex matching subsystem [15]. 

Brodie et al. [16] increased the throughput of regex match- ing by expanding the alphabet set, resulting in an 
exponential increase in memory requirement in the worst case. A more re- cent method [17] introduced sampling 
techniques to accelerate regex matching, but not all types of regex are supported. 

In addition to the aforementioned acceleration approaches, DFA-based compression methods also enhance the 
system performance because they result in smaller DFAs that can be put into the fast memory. Transition compression 
approaches obtain a high compression rate by reducing the number of transitions  for  each  state.  D2 FA  [18]  is  
acknowledged  as the  original  work  in  this  approach.  This  compresses DFA by applying default transitions at the 
cost of accessing the DFA  multiple times  per  input  character. Subsequent work, including [19] and [20], improves 
on the worst case and average performance. 

State  compression  techniques  were  first  utilized  in  [6], where  patterns  are  selectively grouped  to  deflate 
state  ex- plosion. Other work in [8] performed a partial NFA-to-DFA conversion to prevent state explosion. The state-
of-the-art work XFA [10], [11] uses auxiliary memory to reduce the DFA state explosion and achieves a great 
reduction rate. However, XFA is not suitable for real-time applications on networks due to the significant startup 
overhead. Our proposed method does not conflict with the above work, since the fundamental DFAstructure is 
completely preserved. 

 
III. STRIDFA FOR MULTISTRING MATCHING 

 
In this section, we demonstrate the main concepts of StriFA using an example. For the sake of simplicity, the 

example used here only considers string matching, which is a special case of regex matching. In the next section, we 
will present a general solution covering both string matching and regex matching. 

Suppose we have two patterns to match, “reference” (P1 ) and “replacement” (P2 ). The conventional scheme of 
pattern matching is to first convert the patterns to a DFA or NFA. In this example, we consider only DFA, which is 
shown in Fig. 1. The matching process is performed by sending the input stream to the automaton byte by byte. If the 
DFA reaches any of its accept states (the states with double circles), we say that a match is found. It is easy to see that 
the number of states to be visited during the processing is equal to the length of the input stream (in units of bytes), 
and this number determines the time required for finishing the matching process (each state visit requires a memory 
access, which is a major bottleneck in today’s computer systems). 
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Fig.1.TraditionalDFAforpatterns“reference”and“replacement”(some transitions are partly ignored for 

simplicity). 
 

 
Fig. 2.   Tag “e” and a sliding window used to convert an input stream into an SL stream with tag “e.” 

 
Instead of comparing the input stream character by character with patterns in the rule set; we pick tag characters 

from the input stream and feed the fingerprint of these tag characters to  the  automaton for  the  matching 
examination. Since  the fingerprint is normally much shorter than the original input stream, the number of state visits 
required by the matching process can be significantly reduced. 

Here, we use distance (or the number of characters) between adjacent  tags  (denoted  as  stride  lengths  or  step  
sizes)  as the fingerprint. Stride lengths extracted from the rule set are compared with stride lengths extracted from the 
input strings for coarse grained matching. 
      For example, if we select “e” as the tag and consider “referenceabcdreplacement,” as shown in Fig. 2, then the 
corresponding stride length (SL) stream is Fe (S) = 22 3 6 5 2, where Fe (S) denotes  

  Fe (S) denotes the SL stream of the input stream. 
 

IV. STRIDE FINITE AUTOMATON 
 

 The architecture of StriFA is shown in Fig. 4, which consists of three components: SL convertor, StriFA 
matching engine, and verification module. 

1)  The SL convertors convert the input byte stream into multiple SL streams according to different predeter- mined 
tags. 

2)  The core is a stride-based matching engine whose func- tion is to match the input against regex rules, similar to 
that of a traditional NFA or DFA. 

3)  Finally, the verification phase is used if a potential match is found by all StriFAs. 
 

 
 

Fig. 4.Architecture of StriFA-based matching engine 
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A.LIMITING THE SIZE OF ALPHABET SET BY SLIDING WINDOW 
To solve the problem of the large alphabet set, a fixed size sliding window is adopted (a similar application can be 

found in [12-13]). The window works in the following way (see Fig. 5): if a tag is not found within a window distance 
(here window size w=5), then the last character of the window is marked as a fingerprint anchor (the fingerprint 
anchor is not a tag, but treated like a tag to get the SL from the previous tag), the window size w  is sent to the StriFA 
and the character following the fingerprint anchor is set to be the beginning of the window. In this manner, any SL 
sent to a StriFA is limited in a finite alphabet set = {1,...  , w}. 

 
B.BUILDING STRINFA BY NFA- BASED METHOD 

We propose a new StriNFA transforming approach, as de- scribed in the following steps (with corresponding block 
component diagrams in Fig. 6). 
1)  Step1:CompilingregextoCorrespondingNFA:Themethod of compiling a regex to a corresponding NFA is 
conventional (intensively  studied  in  [14]).  Fig.  7(a)  is  the traditional NFA of regex .*abba.{2}caca. Instead of 
converting a traditional NFA to a traditional DFA, tag decision FA will be generated by the traditional NFA directly 

 

 
 

Fig.7.Traditional NFA and tag decision FA of regex .*abba.{2}caca. 
(a)TraditionalNFA.(b)TagdecisionFAusingtag“a.” 

 

 
Fig.8.StriNFAofregex.*abba.{2}cacawithtag=“a”andw=3. 

 
2)   Step 2: Restructuring NFA to Tag Decision FA: In this step, each transition is drawn as a solid line if its label is 
the tag, or it is drawn as a dotted line otherwise. Then, all labels are removed from the transitions of the traditional 
DFA. The output structure is called tag decision FA, as shown in Fig. 7(b), after transformation from Fig. 7(a) using tag 
“a.” 

3)  Step 3:TransformingTag DecisionFAtoStriFA:In this step, we generate a stride nondeterministic FA (StriNFA) 
based on the tag decision FA (a directed graph consisting of solid and dotted transitions). Nondeterministic means that 
some states can have more than one outgoing transition labeled with the same SL (integer). To explain the method, the 
following steps are processed recursively, starting from any state p  in a tag decision FA. 

1) Case 1: if a solid transition (pointing to state q) is reachable in l steps where l ≤ w, add a transition from p to q with 
label l (stride length). 

2)  Case 2: otherwise, if there is a all-dotted-transition path of length w to state q, then add a transition from p to q 
with label w. 
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C.STRINFA TO STRIDFA 
StriNFA is a special kind of NFA, in which the labels are all integers. Transforming StriNFA to StriDFA is 

equivalent to the procedure of transforming from NFA to DFA. One of the tradi- tional transformation algorithms is 
called structural induction in textbooks [21], which was proposed by Thompson [22]. 

As  shown in  Fig. 10,  StriDFA can  be constructed from StriNFA in Fig. 8 by the aforementioned construction 
method. 

 
 
 
 
 
 

 
 
 

 
Fig. 10.   Corresponding StriDFA (transitions back to states 1, 2, and 3 are partly ignored for simplicity). 

 
D. CORRECTNESS PROOF 

Generally, a false negative indicates that the intrusion de- tection  system  is  unable  to  detect  a  genuine  attack . 
The  false  negative  in  the  StriFA  detection  system  means that the traditional NIDS can find the intrusion, while 
the corresponding StriFA  detection  system  is  unable  to  detect the intrusion. In this subsection, we prove the 
correctness of traditional NFA/DFA and StriFA. The correctness here means that StriFA does not cause any false 
negatives: if the StriFA cannot be  matched, then  the  original NFA/DFA cannot be matched either. Because if a 
statement is true, its contrapositive is also logically true. So, we only need to prove that if the original NFA/DFA can 
be matched, the corresponding StriFA can also be matched. 

 
E. VERIFICATION MODULE 

Since the SL stream is a highly compressed form of an input stream, part of the information is left out before being 
sent to StriFA. We have to perform an exact match in the verification module to confirm all the potential matches. 

When the StriFA reports a possible match, the verification module is triggered to start the exact match. Instead of 
match- ing the whole buffer, only part of the input stream needs to be sent to the verification module. Considering the 
memory consumption of  NFA  is  much  less  than  the  corresponding DFA, NFA can be used in the verification 
module. 

If the verification module also reports a match, it means there is a real match from the input stream. Otherwise, the 
input stream is recognized as normal traffic. 

 
V. ANALYSIS AND OPTIMIZATION 

 
The design tradeoff of StriFA involves maximizing filter rate and minimizing the false alarm rate, while preserving 

other key performance indicators (i.e., throughput and memory usage) as best as possible. A low filter rate will trigger 
frequently use of the verification module, degrading the overall throughput. High false alarm rate leads to a waste of 
time in performing the accurate match. 

 
A. TAG SELECTION 

One of the problems for StriFA is how to choose an ap- propriate tag. Since in both the rules and the incoming 
traffic, the occurrence probabilities of different characters vary from each other, it is a problem to choose an 
appropriate tag from the rule set. 
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The character that has the most occurrences in a pattern can extract more SLs. Intuitively, more SLs could express more 
information for the original pattern. For example, considering pattern P1 = “reference,” Fe (P1 )= 22 3 and Fr (P1 )= 4. Fe (P1 ) has 
more SLs when using “e” as the tag, while Fr (P1 ) only has one SL with tag “r.” 

Definition 1: If the occurrence of character x in pattern Pis > 2, then we say P can be covered by x. 
The tag selection strategy is the following heuristic: at each selection, find a new tag that could cover the maximal number of 

patterns. With the greedy algorithm, one tag set is selected and used to generate the corresponding StriFAs. 
 
B. STRIDE-NEIGHBOR FA 

In order to reduce the false alarm rate, we propose a scheme called stride-neighbor FA. A neighbor symbol is defined as the 
character before the tag, or as the character before the last character of the window if a tag is not found within a window. For 
instance, in Fig. 11, the characters before the tags are f, r, and c, respectively, in P1 . Characters f, r, and c are used as neighbor 
symbols to construct a neighbor DFA. Similarly, neighbor symbols c and m are extracted from P2. 
 

 
 

Fig. 11.   Stride-neighbor DFA for P1  = “reference” and P2  = “replacement” with tag = “e” and w = 5. 
 

The combination neighbor DFA of P1  and P2  is illustrated at the bottom of Fig. 11.The stride-neighbor DFA shown in Fig. 11 
uses a combina- tion of a neighbor character together with the corresponding stride length to make StriDFA labels (e.g., 2l).The  
basic  idea  of  stride-neighbor  FA  is  to  reduce  the false alarm rate by starting with a preliminary step of exact matching for  
neighbor characters and  then  combining that with using the stride lengths. This is performed at a small memory consumption cost. 
Generally, the false alarm rate can be reduced by 94.1% when using the stride-neighbor FA. 

 
TABLE I 

Worst Case  Comparisons of NFA, DFA, StriNFA, and StriDFA 
 

 

Oneregularexpression 
oflengthn 

mregularexpression 
compiledtogether 

Processing 
complexity 

Stora
ge 
cos

Processing 
complexity 

Storage 
cost 

NFA O(n2) O(n) O(n2m) O(nm) 

DFA O(1) O(n) O(1) O(nm) 
StriNFA O((n)2) 

w 
O(n) 

w 
O((n)2m) 

w 
O(nm) 

w StriDFA O(1) O(wn) O(1) O(wnm) 
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C. PERFORMANCE OF STRIFA 
Table I shows that a single regular expression of length n can be expressed by an traditional NFA with O(n) states. 

When the traditional NFA is converted to traditional DFA, it may generate O(    n ) states. There is only one outgoing 
transition for each character from a DFA state, so the processing com- plexity of traditional DFA for each character is 
O(1), while it is O(n2 ) for traditional NFA when all n states are active at the same time. Considering StriDFA, there is 
also one outgoing transition for each input SL from each StriDFA state, so the processing complexity of StriDFA for 
each input SLis O(1). Suppose windows size = w, then the average stride length is w/2. The average state number is 
n/w/2, so the processing complexity of StriNFA is O(( n )2 ) when all 2n/w  states are,win the worst case, active at the 
same time. 
 
D. CONVERSION COMPLEXITY OF STRIFA 

Denote α as the average fanout in each state. From lines 26 to 36 in Algorithm 1, we can find the time complexity of 
the recursive procedure in a state is αw . Then, the average time complexity of converting NFA/DFA to StriNFA is 
nαw . In practice, α is less than 3 in Snort rules (α = 2.6 on average). So the complexity of converting to StriFA is 
acceptable. Furthermore, all the conversion from traditional NFA/DFA to the corresponding StriNFA/StriDFA can be 
done off-line. The rule set of the popular NIDS is updated once every one or two months, so we do not need to worry 
too much about the off-line complexity of StriNFA/StriDFA construction/updates. 
 

VI. CONCLUSION 
 

In this paper, we presented StriFA, a novel regular ex- pression matching acceleration scheme for complex 
network intrusion detection systems. The main idea of StriFA is to convert the original byte stream into a much shorter 
integer stream and then match the integer stream with a variant of DFA, called StriFA. We provided the formal 
construction algorithm of StriFA that was able to transform an arbitrary set  of  regex  to  a  StriFA.  We  also  
described  the  method to  produce  stride  length  stream  so  that  false  positive  can be reduced to an acceptable level. 
Our results showed that our architecture can achieve about 10-fold increase in speed, with a lower memory 
consumption compared to traditional NFA/DFA, while maintaining the same detection capabilities. 
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