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ABSTRACT: I2mapreduce: fine-grain incremental processing in big data mining is the extension of Map reduces 
technique it improves the stale and obsolete data mining application results as the new data and updates are arrives. 
Incremental processing gives refreshing mining results I2MapReduce consider its own merits (i) It promotes a 
important services to execute value-key pair computational level processing instead of detail level re-calculation, (ii) It 
assists single-step computation along with extra cultivated continual computation, and it is mostly implemented in data 
mining application, and also (iii) By Incorporating the set of novel techniques, can decrement the I/O overhead for 
collecting the conserved fine-drawn computation states.I2MAPREDUCE:FINE-GRAIN INCREMENTAL 
PROCESSING IN BIG DATA MINING holds the rare incremental processing for both single step and continual 
computation. By using Map reduce based graph store algorithm. The Preliminary outcome at Amazon EC2 represents 
the powerful improvement in performance of I2MapReduce, as compared to both transparent and continual 
MapReduce, which perform the re-computation. 
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I.INTRODUCTION 
 

For every organization data is important for gaining the knowledge, annotation and research the enormous number of 
collection of data is present in multiple dimensions such as e-business, social  network, financial sector, medical sector, 
education, and environment. Healthcare contain huge amount of data which is nothing but big data solution for 
potential impact. Mining of this big data in healthcare is very important in order to provide better personalized, higher 
quality services to the patient. Well famous map reduce programming structural model as well as a file system supports 
this model is called as Hadoop Distributed File System (HDFS) processes the data and also help to analyze 
unstructured data into structured data. Data sources are having high dimensional data of patient, provider can collect all 
the data and store it into structured database. The admin can access the provided data. Data allocated from provider 
only. If n size given in relation then there are 2 raise to n cuboids and this cuboids computed in the cube materialization 
using algorithm [2] which is able to support the feature inMapReduce for efficient cube computation. MapReduce 
programming model processes large volumes of data in parallel manner by dividing the work into a set of autonomous 
tasks. MapReduce based algorithm uses that introduce efficient cube computation [5] and identifies cube sets/groups on 
non-algebraic measures. Complexity is depends on things. 
 

II. LITERATURE SURVEY 
 

There has been number of studies on MapReduce techniques for learning Incremental Iterative MapReducing, Parallel 
Data Processing with MapReducing, MapReducing with data processing on large clusters, MapReducing computational 
model, Big Data Mining using Map Reduce, MapReducing in cloud computing environment, New MapReduce 
Scheduling Technique and Runtime MapReducing. 
I2MapReduce: Incremental Iterative MapReduce Iterative computations like PageRank are always done by Cloud 
intelligence Applications where database and dataset changes are constant, for example Web-graph. For well-organized 
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iterative computations are extend by MapReduce and these is already done in past studies, it is too exorbitant to design 
an entirely new big scale MapReduce iterative job to accommodate new changes to the underlyingData sets within a 
certain time limit. The proposed method in this paper is, i2MapReduce to assist incremental iterative computation. In 
multiple cases it is distinguish that, the present iteratively converged state is totally close to past converged state and 
these effect changes only a slight fraction of the data sets. 
 Parallel Data Processing with MapReduce: A Survey a renowned equidistant data processing mechanism of 
MapReduce is remarkably achieving a strength from both internet industry and education industry, because the volume 
of data to analyze is spreading very quickly. For heavy and immense data observation and its performance analysis 
MapReduce is applicable in multiple domains, there are still formal discussion on a particular parameters such as its 
performance analysis, per node efficiency, and easy abstraction.  
MapReduce: Simplified Data Processing onLarge Clusters A corresponding application for data set processing and 
provoking a big data sets is implemented by MapReduce Programming Model. Users define a map function that 
processes a value/key pair to promote a set of midway value/key pairs, and a lower functionality that unify all 
intermediate keys connect with the same intermediate values.. Various real time environmental functions are 
expressible in this model. A Model of Computation for MapReduceIn modern technology the MapReduceframework 
has become well-known platform for parallel computing and it is extensively applicable for data processing on terabyte 
and petabyte scales. Multi -National Companies such as Yahoo!, Google, Amazon, and Facebook, and currently 
acquired by different universities, it supports easy parallelization of data intensive computations over various machines. 
One vital aspect of MapReduce is that, it is differentiate from previous models of parallel computation and that 
interleaves concurrent computation as well as logical computation. Big Data Mining using Map Reduce Largescale data 
application such as Hadoop file system database has rapidly growing day by day.it is very exorbitant to manage, 
apprehend and bring out the processing data using software tools which is already in existing. Large scale data sets are 
big in size, miscellaneous and dispense. For example Weather Forecasting, Electricity Demand Supply, social media 
and so on. With increasing size of data in data warehouse it is expensive to perform data analysis. Data cube commonly 
abstracting and summarizing databases. It is way of structuring data in different n dimensions for analysis over some 
measure of interest. For data processing bigdata processing framework relay on cluster computers and parallel 
execution framework provided by Map-Reduce. Industry is being challenged to develop methods and techniques for 
affordable data processing on large datasets at optimum response times. The technical challenges in dealing with the 
increasing demand to handle vast quantities of data is daunting and on the rise. One of the recent processing models 
with a more efficient and intuitive solution to rapidly process large amount of data in parallel is called MapReduce. It is 
a framework defining a template approach of programming to perform large-scale data computation on clusters of 
machines in a cloud computing environment.  
Matchmaking: A New MapReduce Scheduling Technique This paper introduced a new intensify scheduling technique 
of MapReduce to boost the locality of map tasks. For processing of big data sets a MapReduce scheduling is a robust 
platform. Good performance is simply reached by a MapReduce scheduler and keep away from unnecessary data 
transmission by upgrading the location of data (implementing tasks on nodes that hold data for input). 
 

III. PROPOSED WORK 
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MapReduce, a novel incremental processing extension to MapReduce, themost widely used framework for mining big 
data. Compared with the state-of-the-art work on Incoop, i2MapReduce performs key-valuepair level incremental 
processing rather than task level re-computation, supports not only one-step computation but also moresophisticated 
iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques 
toreduce I/O overhead for accessing preserved fine-grain computation states. We evaluate i2MapReduce using a one-
step algorithm andfour iterative algorithms with diverse computationcharacteristics. It show significant 
performanceimprovements of i2MapReduce compared to both plain and iterative MapReduce performing re-
computation.We propose a generalpurpose MapReduce model for iterative computation and describe how to efficiently 
support this computationi2MapReduce must transfer the updatedstate kv-pairs to their corresponding prime Map task, 
which caches the independent structure kv-pairs in itslocal file system. Real-machine experiments showthat i2 
MapReduce can significantly reduce the run timefor refreshing big data mining results compared to recomputationon 
both plain and iterative MapReduce. 
A. Advantages 
It performs key-value pair level incremental processing.It supports one-step computation and more sophisticated 
iterative computation. Performance is very high in Runtime. Consider two MapReduce jobs A and A0 performing the 
same computation on input data set D and D0, respectively. D0 ¼ D þ DD, where DD consists of the inserted and 
deleted input hK1; V 1is1. An update can be represented as a deletion followed by an insertion. Our goal is to 
recomputed only the Map and Reduce function call instances that are affected by DD. Incremental computation for 
Map is straightforward. We simply invoke the Map function for the inserted or deleted hK1; V 1is. Since the other 
input kv-pairs are not changed,their Map computation would remain the same. We now have computed the delta 
intermediate values, denoted DM,including inserted and deleted hK2; V2is.To perform incremental Reduce 
computation, we need to save the fine-grain states of job A, denoted M, which includes hK2; fV 2gis. We will 
recompute the Reduce function for each K2 in DM. The other K2 in M does not see anychanged intermediate values 
and therefore would generate the same final result. For a K2 in DM, typically only a subset of the list of V 2 have 
changed. Here, we retrieve the saved hK2; fV 2gi from M, and apply the inserted and/or deleted values from DM to 
obtain an updated Reduce input.We then re-compute the Reduce function on this input to generate the changed final 
results hK3; V 3 is.it is easy to see that results generated from this incremental computation are logically the same as 
the results from completely re-computing A0. 
B.Incremental iterative processing  
In this section, we present incremental processing techniques for iterative computation. Note that it is not sufficient to 
simply combine the above solutions for incremental one step processing and iterative computation. In the following, we 
discuss three aspects that we address in order to achieve an effective design. 
C. Fault-Tolerance  
Vanilla MapReduce reschedules the failed Map/Reduce task in case task failure is detected. However, the 
interdependency of prime Reduce tasks and prime Map tasks in i2MapReduce requires more complicated fault-
tolerance solution. I2MapReduce checkpoints the prime Reduce task’s output state data and MRBGraph file on HDFS 
in every iteration.Upon detecting a failure, i2MapReduce recovers by considering task dependencies in three cases. (i) 
In case a prime Map task fails, the master reschedules the Map task on the worker where its dependent Reduce task 
resides. The prime Map task reloads its structure data and resumes computation from its dependent state data 
(checkpoint). (ii) In case a prime Reduce task fails, the master reschedules the Reduce task on the worker where its 
dependent Map task resides. The prime Reduce task reloads its MRBGraph file (checkpoint) and resumes computation 
by re-collecting Map outputs. (iii) In case a worker fails, the master reschedules the interdependent prime Map task and 
prime Reduce task to a healthy worker together. The prime Map task and Reduce task resume computation based on the 
check pointed state data and MRBGraph file as introduced above. 
D.Reducing Change Propagation 
In incremental iterative computation, changes in the delta input may propagate to more and more kv-pairs as the 
computation iterates. For example, in PageRank, a change that affects a vertex in a web graph propagates to the 
neighbor vertices after an iteration, to the neighbors of the neighbors after two iterations, to the neighbors after three 
iterations, and so on. Due to this effect, incremental processing may become less effective after a number of iterations. 
To address this problem, i2MapReduce employs aChange propagation control technique, which is similar to the 
dynamic computation in Graph Lab [6]. It filters negligible changes of state kv below a given threshold. These filtered 
kv supposed to be very close to convergence. Onlythe state values that see changes greater than the thresholdare 
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emitted for next iteration.The changes for a state kv-pair are accumulated. It is possible a filtered kv-pair may later be 
emitted if its accumulated change is big enough .The observation behind this technique is that iterative computation 
often converges asymmetrically: Many state kv quickly converge in a few iterations, while the remaining state kv-pairs 
converge slowly over many iterations. 
E.MRBG-Store  
The MRBG-Store supports the preservation and retrieval offline-grain MRBGraph states for incremental processing. 
We see two main requirements on the MRBG Store must incrementally store the evolving MRBGraph. Consider a 
sequence that incrementally refresh the results of a big data mining algorithm. As input data evolves, the intermediate 
states in the MRBGraph will also evolve. It would be wasteful to store the entire each subsequent job. Instead, we 
would like and store only the updated part of the MRBGraph. Second, the MRGB efficient retrieval of preserved states 
of given Reduce instances. For incremental computation, i2MapReduce re instance associated with edge, as described 
in Section 3.3. For a changededge, it queries the MRGB preserved states of the in-edges of the associated K2, and 
merge the preserved states with the newly computed edge changes. 
 

IV. ALGORITHMS 
 

A.Query Algorithm in MRBG-Store 
Input: queried key: k; the list of queried keys:L 
Output: chunk k 
1: if! read cache. Contains (k) then 
2: gap =0, w =0 
3: i=ks index in L That is, L i = k 
4: while gap ¡ T and w + gap + length (L i) read cache: 
Size do 
5: w =w+gap + length (L i) 
6: gap= pos(L i+1) pos(L i) - length (L i) 
7: i =i + 1 
8: end while 
9: starting from posk, read w bytes into read cache 
10: end if 
11: return read cache. Getchunk(k) 
B.Page ranking Algorithm 
Map Phase Input: <i,Ni|Ri> 
1: output<i,Ni> 
2: for all j in Nido 
3: Ri,j= Ri |Ni| 
4: output<j,Ri,j> 
5: end for 
Reduce Phase input:<j,{Ri,j,Ni}> 
6: Rj=dΣiRi,j+(1-d) 
7: output<j,Nj|Rj> 
C.K-Means Clustering Algorithm 
1. Clusters predefined. 
2. Select k points at random as cluster centers. 
3. Assign objects to their closest cluster center according to the Euclidean distance function. 
4. Calculate the centroid or mean of all objects in each cluster. The data into k groups where k is  
5. Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in consecutive rounds 
D.Algorithm: GIM-V in Map Reduce 
Map Phase 1 input: < (i,j),mi,j>or<j,vj> 
1: if kv-pair is < (i,j),mi,j>then 
2: output < (i,j),mi,j> 
3:  else if kv-pair is <j,vj>then 
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4: for all i blocks in j’s row do 
5: output < (i,j),vj> 
6: end for  
7: end if 
Reduce Phase 1 input: < (i,j),{mi,j,vj}> 
8: mvi,j=combine2(mi,j,vj) 
9: output<i,mvi,j>,<j,vj> 
Map Phase2: output all inputs 
Reduce Phase2: input<i, {mvi,j,vi}> 
10:v’i=combine All ({mvi,j}) 
11: vi=assign (vi,v’i) 
12: output<i,vi> 
 

V. RESULT ANALYSIS 
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Precision & Recall 
Precision and recall are calculated based on the number of record retrieved. Precision shows number of relevant record 
retrieved as per the user query out of total record in the database.Recall is calculated number of irrelevant record 
retrieved as per the user query out of total record.The precision and recall is calculated for both disease as well as 
symptoms.This analysis is help to calculate the accuracy. 
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VI. MATHEMATICAL MODEL 
I= I1,I2,I3,I4 
Where, 
I1=Username 
I2=Password 
I3=Keywords 
I4=Dataset 
Intermediate Output Set 
E= E1, E2 
Where, 
E1=Authorized User 
E2=Homogeneous Data 
E3=Heterogeneous Data 
E4= Anonymous Data 
Final Output Set 
D= D1 
 

VII. CONCLUSION 
 

I have described I2MapReduce- Fine Grain Incremental Processing based on MapReduce framework. That implements 
the key-pair level, which is rare incremental process to decline the number of re-computation and MRBG-Store to carry 
the most elegant quires to recapture the rare states for cumulative processing and to retain the rare states in MRBGraph. 
This framework combines, a regular purpose continual model, a rare cumulative engine, and a competent techniques 
for fine-grain incremental continual computation. I2MapReduce can powerfully decrement the run time for reviving a 
large-scale data mining results in Real-machine experiments that compared to re-computation on both transparent and 
iterative MapReduce. 
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