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ABSTRACT: In this era of post digitization organizations are generating, processing, and retaining data at a rate that 
often exceeds their ability to analyze it effectively; at the same time, the insights derived from these large data sets are 
often key to the success of the organizations, allowing them to better understand how to solve hard problems and thus 
gain competitive advantage. Here we are trying to use publicly available machine learning algorithms to analyze usage 
pattern of a general storage element manager. To infer system insights from the log, we are using industry standard 
open source elastic search to monitor and analyze user behavior. Using crowd sourcing as paradigm we are inferring 
useful information, which is a feedback to the system, to improve multiple aspects like usability, traceability, 
supportability. Thus, the novelty of the approach is, it is purely open source based and it can be generalized for any 
kind of log analysis and prediction. 
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I. INTRODUCTION 
 
First phase of SDLC (software development cycle) is requirement analysis i.e. to develop any software, first question to 
answer is what user is expecting from the product. Better we understand the requirements, better will be product. But 
requirements change over time. There’s often a disconnect between user’s expectation, what the engineering delivers 
and the way the product is used. The method proposed here, is one such attempt to minimize this disconnect. Product 
Managers hence have the onus on them to monitor usability and supportability aspects of the product and keep this 
feedback loop active. While there are traditional techniques like Brainstorming, Document Analysis, Focus Group, 
Interface Analysis, Interview, Observation, Prototyping, Requirements Workshop, Reverse Engineering, Survey etc. 
the proposal here is an automated approach to bridge this gap using the system logs. Proposed method is an approach 
for log analytics for achieving the same goal of inferring user behavior, i.e. trying to find out the answer for the 
question, how the user is using the product?  
 
Current GUI based software applications often produce (or can be configured to produce) some auxiliary text files 
known as log files. Such files are used during various stages of software development, mainly for debugging and 
profiling purposes. Log analysis is the process of transforming raw log data into information for solving problems. The 
market for log analysis software is hugeand growing as more business insights are obtained from logs. We are trying to 
capture the huge amount usage log of clients for a web-based system administration application and then parse them to 
extract useful information. The obtained useful insights can then be fed back to the system to improve their usability. 
Smart defaulting is a necessity for increased usability i.e. just few less clicks to configure or perform actions can 
increase usability to larger extent as user don’t have to set some fields explicitly; some options already chosen for them 
in a long workflow, can provide better usability. To achieve this, after parsing the log we are trying to extract 
parameters to API calls along with all the values that client has used. From that we can do our statistical study for each 
API call and can default a value which is used more frequently by user in UI, based on a context.  Another aspect we 
are trying to address is Supportability. To address this aspect, we trying to find out all possible failure patterns that 
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occurred while performing any action; and trying to analyze the reason behind the failure i.e. here we trying to find 0*1 
(sequence of failures followed by a success).From this, we can figure out the reason behind frequent failure of 
workflows, which will provide recommendations that improves the value, support teams bring on to the table. 
For log analysis, we are using combination of three open source tools; which are Elasticsearch, Logstash, Kibana, 
popularly known as ELK stack.  Logstash is used as log parser which has some good features like some filters for log 
parsing has been provided implicitly we should use them wisely to get structured data from log. Whereas Elasticsearch 
is used as data store which has features like inbuild inverted indexing and it has very powerful full text search engine 
which will be useful for textual analysis. Kibana is used as visualizer which gives powerful yet simple features for 
plotting. 

 
II. LITERATURE SURVEY 

 
[1]. Mining modern repositories with elastic search ( OleksiiKononenko-University of Waterloo, et al) this paper 
explains the usage of elastic search for development of a tool called DASH that allows Mozilla developers see the 
“live” picture of the patch review process. By switching to Elastic search, they have remarkably improved DASH’s 
performance which rendered the tool suitable for the real-time use 
 
[2]. Feasibility analysis of big log data real time search based on HBase and Elastic Search (Jun Bai-Dept. of Mech. 
&Electr. Eng., et al) This paper presents a real-time big data search method: First, Flume agent from the end user's 
machine collect log events, then Elastic Search per the search conditions are needed row key list; finally, HBase using 
these row key directly from the database to get the data, the paper-based hardware to create a virtual machine 
environment, the experiment proved, with the search for more log events, the search response time does not increase 
linearly. 
 
[3]. Indexing Linked Bibliographic Data with JSON-LD, BibJSON and Elastic search (Thomas Johnson) This paper 
presents a novel solution for representing and indexing bibliographic resources that retains the data integrity and 
extensibility of Linked Data while supporting fast, customizable indexes in an application-friendly data format. The 
methodology makes use of JSON-LD to represent RDF graphs in JSON suitable for indexing with Elastic search 
[4]. Substring filtering for low-cost Linked Data interfaces (Joachim Van Herwegen, et al) In this paper, they discuss 
the client/server setup and compare the performance of sparql queries on multiple implementations, including Elastic 
Search and case-insensitive fm-index. Their evaluations indicate that these improvements allow for faster query 
execution without significantly increasing the load on the server. Offering the substring feature on tpf servers allows 
users to obtain faster responses for filter-based sparql queries. Furthermore, substring matching can be used to support 
other filters such as complete regular expressions or range queries. 
[5]. Influence Rank: A machine learning approach to measure influence of Twitter users (Ashish Nargundkar, Y. S. 
Rao) system comprises of a regression based machine learning approach with Influence Rank as the predictor variable 
against the set of proposed features.  
 

III. ARCHITECTURE 

 
Fig a. System Architecture 
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Log parser is central repository for capturing log from multiple nodes. This infrastructure can scale at run time. The log 
can be parsed with the help log parser, which includes custom parsers as well. And as logs are semi structured we can 
mould it into structured format by parsing tha log and extracting the only required portion from that and rest can purged 
out. Then parsed log can be fed to the data store, in our case we are using elasticsearch as data repository. Here we can  
query and obtain some assocition amoung data and and create multiple views of same schema, so that the data can be 
visualized from various dimensions. As elasticsearch has a web based application for visualization i.e kibana, where 
one can pivot the data in all possible ways and represent obtained knowledge by drawing various charts like pie chart, 
stack chart, histrogram etc. Once the obtained knowledge is represented in charts one can eaasily do statastical anlysis 
on the parsed data and conclude the analysis. In kibana one can export the result in the from of excel sheet also.   

 
IV.WORKFLOW 

 

 
 
STEP 1: Collect log in Debug mode from multiple clients and feed it to Logstash. 
STEP 2: Write config file for parsing in Logstash 
STEP 3:  As Logstash has predefined filters which are useful for standard logs like apache etc. so for more refining we 
should write customized parser to tune semi structured data to structured data. 
STEP 4: Create a timeline so that it will be easy to track clients sequence of actions 
STEP 5: Create a schema which gives structured information about all API calls, what inputs are passed to those API 
and result status of API call i.e. whether PASS or FAIL 
STEP 6: From timeline, group all possible API calls together to form a transaction and run some association rule 
mining algorithm, such as FP_GROWTH to get all API’s which occurring together in a single action performed 
STEP 7: From timeline, find out all API calls with status as failed and find out all possible workflows which includes 
failed API calls. 
STEP 8:  Create a schema for failed workflows with their result status vector.    
STEP 9: Push all schema created to Elasticsearch. 
STEP 10: Draw charts and explore in Kibana for each API calls and the attributes passed to that API. 
STEP 11:  Export chart created in the form of excel sheet from Kibana 
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V.METHODOLOGY 
 

STEP 1: Create a table-1 
 

Seq. 
No 

API  Total Input Result  
Status 

 Response time 

1 Get-
API-A 

 Aa=2; 
Ab=2; Ac=3; 

Passed 230ms 

2 Create-
A 

A-name=abc; 
a-set=3; 

a-max=10; 

Failed 94ms 

3 Get-
API-B 

Ba=5; 
Bb=10; 
Bc=10; 

passed 400ms 

. . . . . 

n Get-
API-Z 

Za=3; 
Zb=4; 
Zc=10; 

Passed 380ms 

 
 
STEP 2: From table-1 find out  

a. Which APIs are called frequently. 
b. For each API find out frequency of their attributes occurrence and value assigned to that attribute. 
 

STEP 3: If  
frequency of occurrence of a value for an attribute >= threshold value (70%).Then, set that value of attribute 
as a default value in UI. 
 

STEP 4: Find out most commonly called group of API’s which are called together: 
a. from table-1 create transactions of length 3 to 9 for API’s called in sequential order.  
b. run any association rule mining algorithm on those transactions like FP-growth and get combination of 
API’s which are called together. 

 
STEP 5: Create Table-2 
 

Comb. 
No 

Combination 
of API’s  

Frequency length validity 

1 Get-API-A, 
Create-B, 
Update-A; 

 10 3 valid 

2 Get-API-B, 
Create-A, 

Update-C, 
Delete-D, 
Create-E 

5 5 Invalid 

 
STEP 6: If, 
 API.result _status == failed 
 Then, 

Append API .name and API.reason to list of failed API’s  
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STEP 7: From the list of failed API’s create table-3 
STEP 8: From table -2 and table-3 find out the combination which contains failed API’s 
STEP 9: Find most frequently failed workflows with the reason and find out reason behind failure of workflows 

 
VI. CONCLUSION 

 
 
 
 
 
 
 
 
 
 
 
The main objectives of the paper were usability and supportability which have been hence achieved. 
Usability was achieved by analyzing the user logs and finding out which options/fields the user frequently makes use 
of. 
These options were smart defaulted in the GUI thus surging the usability. 
In addition to this, user time spent on each page was analyzed and these frequently used pages were cached so that it 
becomes easier for the user to access them. 
These frequently used pages could also be added as shortcuts on the UI. 
Also, supportability was achieved by analyzing frequently failing workflows and reasoning out the cause of the failure. 
These reasons were notified to the user so that the user avoids the failed workflows in the future. 
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Sr.no API-name Reason of 
failure 

Frequency 

1 API-D Entry doesn’t 
found 

3 

2 API-F Doesn’t support 
protocol 

2 

3 API-S Not compatible 7 
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