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ABSTRACT: Machine learning is a specific application of artificial intelligence that allows computers to learn and 

improve from data and experience via sets of algorithms, without the need for reprogramming. In the field of energy 

storage, machine learning has recently emerged as a promising modeling approach to determine the state of charge, 

state of health and remaining useful life of batteries. To cope with the new transportation challenges and to ensure the 

safety and durability of electric vehicles and hybrid electric vehicles, high performance and reliable battery health 

management systems are required. The Battery State of Health (SOH) provides critical information about its 

performances, its lifetime and allows a better energy management in hybrid systems. In this paper, we used CNN 

algorithm for battery life prediction and state of charge estimation. 
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I. INTRODUCTION 

Electric vehicles (EVs) are considered as future cars to solve oil dependency and environmental problems. However, 

the spread of EVs is limited by high price, long charging time, few charging stations and limited driving range. The 

limited driving range and long charging time may lead to “range anxiety”, which can be explained as the drivers’ 
concern of not reaching the destination during driving. Range anxiety is considered as one of the major factors that 

affect the acceptance of electric vehicles. Apart from a bigger battery, an accurate range estimation system is necessary 

to solve range anxiety. However, the prediction of the remaining range is complicated, because it is dependent on some 
stochastic factors such as vehicle characteristics, driving behaviour, traffic state, road topography and weather 

condition. Several studies have been performed to predict the remaining driving range of EVs. They mainly focus on 

predicting the driving speed [2-4] and obtaining the traffic information and road topography information. 

The limited driving range is considered as a significant barrier to the spread of electric vehicles. One effective method 
to reduce “range anxiety” is to offer accurate information to the driver on the remaining driving range. However, the 

energy consumption during driving is largely determined by driving behaviour, road topography information and traffic 

situation, which are hard to predict. Global warming has led to more severe regulations on CO2 and pollutant 

emissions. In these circumstances, Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) have been introduced. 

EVs are considered as a solution to the above issue since it offers a zero emissions alternative. Besides, EVs are 

cheaper to recharge as electricity is cheaper than fuel. It is also possible to recover some energy from regenerative 

braking with EVs thanks to electric motors reversibility. Along with HEVs, it is a solution for car manufacturers to 

reduce the average emissions of their fleet to meet the regulations and hence avoid paying taxes.  

II. LITERATURE SURVEY 

In [1], a survey of battery state estimation methods based on ML approaches such as feedforward neural networks 

(FNNs), recurrent neural networks (RNNs), support vector machines (SVM), radial basis functions (RBF), and 

Hamming networks is provided. Comparisons between methods are shown in terms of data quality, inputs and outputs, 

test conditions, battery types, and stated accuracy to give readers a bigger picture view of the ML landscape for SOC 

and SOH estimation. Additionally, to provide insight into how to best approach with the comparison of different neural 

network structures, an FNN and long short-term memory (LSTM) RNN are trained fifty times each for 3000 epochs.  

In [2], an SOC and SOH co-estimation scheme is proposed based on the fractional-order calculus. First, a fractional-
order equivalent circuit model is established and parameterized using a Hybrid Genetic Algorithm/Particle Swarm 

Optimization method. This model is capable of predicting the voltage response with a rootmean-squared error less than 
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10 mV under various drivingcycle-based tests. Comparative studies show that it improves the modeling accuracy 

appreciably from its second- and thirdorder counterparts. Then, a dual fractional-order extended Kalman filter is put 

forward to realize simultaneous SOC and SOH estimation.  

In [3], initially different types of batteries used in the EVs and HEVs are investigated, according to the latest battery 
management systems (BMS). Li-Ion batteries are a popular source of EVs and HEVs because of their long-life span, 

high energy and power density, and good charging and discharging performance. However, there remain some issues 

associated with the deployment of Li-ion batteries, such as complex electrochemistry, degradation, and inaccurate 

battery health estimation. The latest techniques for the estimation of the battery state of health (SOH) are reviewed in a 

comparative table. 

In [4], a new reduced-decoupling SOC and SOH co-estimation algorithm based on convex optimization is proposed. 

This scheme estimates the battery SOC from the battery model and does not require the classic coulomb-counting 

method. Therefore, it can decouple the capacity estimation from the SOC estimator and reduce the strong interaction 
existing in conventional co-estimation methods. Besides, all state variables can be solved together by one estimator, 

which is straightforward and avoids the complicated observer network. Owing to the decoupling design, the stability of 

the proposed method becomes more intuitive and can be always guaranteed according to the convexity analysis without 

using other stabilizing approaches.  

In [5], a detailed assessment of optimizationdriven moving horizon estimation (MHE) framework by means of a 
reduced electrochemical model is pursued. For State-of-Charge (SOC) estimation, the standard MHE and two variants 

in the framework are examined by a comprehensive consideration of accuracy, computational intensity, effect of 

horizon size, and fault tolerance. A comparison with common extended Kalman filtering (EKF) and unscented Kalman 

filtering (UKF) is also carried out. Then, the feasibility and performance are demonstrated for accessing internal battery 

states unavailable in equivalent circuit models (ECMs), such as solid-phase surface concentration and electrolyte 

concentration.  

In [6], two new approaches are suggested to enrich the existing solutions. To that extent, capacity fading is studied 
using exchanged energy during charging events. What's more, power fading is assessed using direct current resistance 

(DCR) and voltage measurement at the beginning of charge events. Both solutions produce reliable state of health 

measurements SoH with significantly good accuracy. 

In [7], by proposing a constant temperature constant-voltage (CT-CV) charging technique, considering cell temperature 
as a key degradation metric, gap between charging techniques that use instantaneous cell voltage and/or temperature to 

modulate the charging current magnitude is minimized. The proposed CT-CV charging scheme employs a simple and 

easy-to-implement proportional-integral-derivative (PID) controller aided by a feed-forward term. The charging current 

is dynamically adjusted in response to the battery temperature, which indirectly reflects its aging and thermal 

environment.  

In [8], a fast charging technique for a grid-tied, cascaded H-bridge (CHB) converter based charging station is 

developed. A controller is designed to achieve constant current constant voltage (CC-CV) charging for all of the cells 
of the CHB converter. As proven in this paper, to achieve fast charging, the effects of internal resistance and 

polarization parameters of battery should be compensated. To reach this goal, the internal resistance and polarization 

parameters of battery are estimated based on the initial fast measurements before formal battery charging. The 

estimated parameters can increase the constant current charging duration for Li-Ion batteries so the charging speed is 

improved.  

In [9], constant voltage is kept across the battery. And it draws higher current but Li-ion cells have 4.2+/-50mV as 
nominal set-point voltage and allowable charging current is 1C .This process of charging is chosen for Pb-acid batteries 

as each individual cell balance the charge between them .The lead acid cells used for cars and backup power systems. 

The disadvantage of this technique is battery does not charge fully and time required for charging is more than 2 hours.  

In [10], a particle swarm optimization algorithm to search for an optimal five-stage constant-current charge pattern is 
proposed. The goal is to maximize the objective function for the proposed charge pattern based on the charging 

capacity, time, and energy efficiency, which all share the same weight. Firstly, an equivalent circuit model is built and 

battery parameters are identified. Then the optimal five-stage constant-current charge pattern is searched using a 

particle swarm optimization algorithm. At last, comparative experiments using the constant current-constant voltage 
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(CC-CV) method are performed. Although the charging SOC of the proposed charging pattern was 2.5% lower than 

that of the CC-CV strategy, the charging time and charging energy efficiency are improved by 15.6% and 0.47% 

respectively. 

III. PROPOSED METHOD 
 

Lithium-ion batteries have emerged as the state-of-the-art energy storage for portable electronics, electrified vehicles, 

and smart grids. An enabling Battery Management System holds the key for efficient and reliable system operation, in 

which State-of-Charge (SOC) estimation and State-of-Health (SOH) monitoring are of particular importance. In this 
article, an SOC and SOH co-estimation scheme is proposed based on the CNN algorithm. 

 
 

Fig 1 block diagram of proposed system 

 

An accurate estimation of the SOC is crucial to improve vehicle performance, safety, passenger comfort, andto 

minimize costs associated with over design or oversizingof the pack.Due to the strong dependence of SOC estimation 

on battery capacity, the insufficient precision of capacity diagnostic may further reduce the SOC estimation accuracy. 

An effective approach is to measure different associated parameters of the battery. These include current, voltage and 

temperature of the battery, where for SOH estimation internal resistance and the battery capacity are direct standards. 

Dataset of internal resistance of battery, capacity, voltage, current and temperature is feed to CNN for training (shown 

in fig). Parameters of test electric vehicle is fed to system, CNN compares test electric vehicle data with parameters 

from dataset and estimates SOH (state of Health) and SOC (State of charge) of battery. 

 

Algorithm – CNN 
Neural networks are a set of algorithms, modeled loosely after the human brain, that are designed to recognize 

patterns. They interpret sensory data through a kind of machine perception, labeling or clustering raw input. The 
patterns they recognize are numerical, contained in vectors, into which all real-world data, be it images, sound, text or 

time series, must be translated. 

Neural networks help us cluster and classify. You can think of them as a clustering and classification layer on 

top of the data you store and manage. They help to group unlabeled data according to similarities among the example 
inputs, and they classify data when they have a labelled dataset to train on. (Neural networks can also extract features 

that are fed to other algorithms for clustering and classification; so you can think of deep neural networks as 

components of larger machine-learning applications involving algorithms for reinforcement learning, classification 

and regression.) 

Deep learning maps inputs to outputs. It finds correlations. It is known as a “universal approximator”, because 

it can learn to approximate an unknown function f(x) = y between any input x and any output y, assuming they are 

related at all (by correlation or causation). 

1) Classification 
All classification tasks depend upon labeled datasets; that is, humans must transfer their knowledge to the 

dataset in order for a neural network to learn the correlation between labels and data.  This is known as supervised 

learning. 
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 Detect faces, identify people in images, recognize facial expressions (angry, joyful) 

 Identify objects in images (stop signs, pedestrians, lane markers…)  

 Recognize gestures in video 

 Detect voices, identify speakers, transcribe speech to text, recognize sentiment in voices 

 Classify text as spam (in emails), or fraudulent (in insurance claims); recognize sentiment in text (customer 
feedback) 

Any labels that humans can generate, any outcomes that you care about and which correlate to data, can be 

used to train a neural network. 

2) Clustering 

Clustering or grouping is the detection of similarities. Deep learning does not require labels to detect 

similarities. Learning without labels is called unsupervised learning. Unlabeled data is the majority of data in the world. 

One law of machine learning is: the more data an algorithm can train on, the more accurate it will be. Therefore, 

unsupervised learning has the potential to produce highly accurate models. 

 Search: Comparing documents, images or sounds to surface similar items. 

 Anomaly detection: The flipside of detecting similarities is detecting anomalies, or unusual behavior. In many 
cases, unusual behavior correlates highly with things you want to detect and prevent, such as fraud. 

3) Neural Network Elements 

Deep learning is the name we use for “stacked neural networks”; that is, networks composed of several layers. 

The layers are made of nodes. A node is just a place where computation happens, loosely patterned on a neuron in the 

human brain, which fires when it encounters sufficient stimuli. A node combines input from the data with a set of 

coefficients, or weights, that either amplify or dampen that input, thereby assigning significance to inputs with regard to 

the task the algorithm is trying to learn; e.g. which input is most helpful is classifying data without error? These input-

weight products are summed and then the sum is passed through a node’s so-called activation function, to determine 

whether and to what extent that signal should progress further through the network to affect the ultimate outcome, say, 

an act of classification. If the signals pass through, the neuron has been “activated.” 

 

A node layer is a row of those neuron-like switches that turn on or off as the input is fed through the net. Each 

layer’s output is simultaneously the subsequent layer’s input, starting from an initial input layer receiving your data. 

 

Pairing the model’s adjustable weights with input features is how we assign significance to those features with 

regard to how the neural network classifies and clusters input. 
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Deep-learning networks are distinguished from the more commonplace single-hidden-layer neural networks 

by their depth; that is, the number of node layers through which data must pass in a multistep process of pattern 

recognition.Deep-learning networks perform automatic feature extraction without human intervention, unlike most 

traditional machine-learning algorithms. Given that feature extraction is a task that can take teams of data scientists 

years to accomplish, deep learning is a way to circumvent the chokepoint of limited experts. It augments the powers of 

small data science teams, which by their nature do not scale. 

When training on unlabeled data, each node layer in a deep network learns features automatically by 

repeatedly trying to reconstruct the input from which it draws its samples, attempting to minimize the difference 

between the network’s guesses and the probability distribution of the input data itself. Restricted Boltzmann machines, 

for examples, create so-called reconstructions in this manner. 

Deep-learning networks end in an output layer: a logistic, or softmax, classifier that assigns a likelihood to a 

particular outcome or label. We call that predictive, but it is predictive in a broad sense. Given raw data in the form of 

an image, a deep-learning network may decide, for example, that the input data is 90 percent likely to represent a 

person. 

Artificial Intelligence has been witnessing a monumental growth in bridging the gap between the capabilities 

of humans and machines. Researchers and enthusiasts alike, work on numerous aspects of the field to make amazing 

things happen. One of many such areas is the domain of Computer Vision.The agenda for this field is to enable 

machines to view the world as humans do, perceive it in a similar manner and even use the knowledge for a multitude 

of tasks such as Image & Video recognition, Image Analysis & Classification, Media Recreation, Recommendation 

Systems, Natural Language Processing, etc. The advancements in Computer Vision with Deep Learning has been 

constructed and perfected with time, primarily over one particular algorithm — a Convolutional Neural Network. 

 

Fig 2 architect CNN 

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input 

image, assign importance (learnable weights and biases) to various aspects/objects in the image and be able to 

differentiate one from the other.  

The pre-processing required in a ConvNet is much lower as compared to other classification algorithms. While 

in primitive methods filters are hand-engineered, with enough training, ConvNets have the ability to learn these 

filters/characteristics. The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in the 

Human Brain and was inspired by the organization of the Visual Cortex. Individual neurons respond to stimuli only in a 

restricted region of the visual field known as the Receptive Field. A collection of such fields overlap to cover the entire 

visual area. 
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IV. RESULTS 

 

 
Fig 3. Login  

 

 
 

 

Fig 4.Bill Payment 
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Fig 5.Result 

 

 

 

Fig 6.Graph  

 

 

V. CONCLUSION 
 

SOC and SOH estimation is of a great importance when developing a battery management system; they provide an 

overview of the short- and long-term state of the battery. The paper proposes a new SOC and SOH co-estimation 

method with reduced coupling based on convex optimization. Since the energy storage systems have been 
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highlighted in portable electronics and hybrid electric vehicle applications, the estimate accuracy of SOC becomes 

increasingly important. In recent years, many scholars have done a lot of research on SOC estimation. 
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